• Title/Summary/Keyword: 수리거동 index

Search Result 9, Processing Time 0.028 seconds

CFD Simulation of the Effects of Inlet Flow rate on Hydraulic Behavior in Continuous Stirred-Tank Reactor (CSTR) (CFD 모사 기법을 이용한 유입 유량에 의한 연속 완전혼화 반응조 수리거동 고찰에 관한 연구)

  • Lee, Young Joo;Oh, Jeong Ik;Yoon, Sukmin;Kim, Jong-Oh;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 2016
  • This paper describes three-dimensional computational fluid dynamics (CFD) simulation of liquid-liquid flow and transient tracer tests in a full-scale continuous stirred-tank reactor (CSTR) used for drinking water treatment. To evaluate the effects of inlet flow rate on hydrodynamic behavior in the selected CSTR, inlet flow rate was changed from 10% to 100% of the design flow rate. From the results of CFD simulation and analysis, as the inlet flow rate increases, Modal index and ${\beta}$ value are increased. Also, Morrill index shows local minimal points in relation to the inlet flow rate, which are observed at 20% and 40% of the design flow. As inlet flow Increases more than 40%, it is shown that Morrill index re-increases to close to ideal CSTR.

A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin (경사 구조물이 침전지내 수리거동 Index에 미치는 영향)

  • Lim, Seong-Ho;Hwang, Jun-Sik;Park, No-Suk;Kim, Seong-Su;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

Hydrodynamic Mixing Characteristics in Large River Confluence using Secondary Current Monitoring (2차류 계측 활용 대하천 합류부 수리학적 혼합거동 분석)

  • Suin Choi;Dongsu Kim;Kyungdong Kim;Youngdo Kim;Siwan Lyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.213-213
    • /
    • 2023
  • 하천의 합류부는 두 하천이 만나 형성되는 지역으로 복잡한 혼합 거동을 보인다. 합류부에서는 실제로 수리 특성이 유황에 따라 다양하게 변화하고 수환경 특성도 함께 변화하며, 이로 인해 본류와 지류에 비해 다양한 생태학적인 종이 분포하는 등 환경적으로 중요구간 중 하나이다. 합류부의 혼합 거동을 이해하기 위해서는 다양한 유황에 따른 수체 혼합 거동을 2차류를 통해 분석하는 것이 중요하다. 해외의 경우 2차류의 패턴을 통해 합류부에서의 혼합 거동을 공간적으로 분석한바 있으나(Riley and Rhoads, 2012), 대부분의 연구들은 중·소규모의 하천을 대상으로 진행되어 대규모 하천에서의 확인은 미흡한 상태이다. 또한, 실제 현장에서 계측을 통한 데이터 획득과 후 처리의 어려움으로 인해 현재 국내에서는 2차류 패턴을 통해 대규모 하천 합류부의 혼합 거동을 확인한 사례는 전무한 실정이다. 따라서, 본 연구에서는 Sontek사의 ADCP를 통해 계측된 수리 데이터를 Rozovskii의 방법을 기반으로 한 2차류로 나타내 낙동강-금호강 합류부에서의 공간적인 수체 혼합을 확인하였다. 혼합거리를 판단하기 위해 합류 이후 혼합의 경계면(Shear Layer)에서 나타나는 2차류의 특이한 패턴(Helical motion)을 주요 지표(Index)로 사용하였다. 그리고, 수질 센서인 YSI EXO2의 수표면 전기전도도의 분포를 통해 합류부에서 본류와 지류의 혼합거리를 산정하였으며, 2차류의 패턴과 비교하였다. 분석 결과, 대규모 하천에서 2차류의 특이한 패턴이 존재함을 명확히 확인하였다. 본류와 지류의 모멘텀 비에 따라 서로 다른 패턴의 혼합양상을 2차류를 통해 확인할 수 있었으며, 2차류의 혼합 패턴과 전기전도도의 분포를 비교 분석하여 합류부에서의 혼합을 3차원적으로 해석하였다.

  • PDF

Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation (토양 손실 평가에 의한 식생매트의 허용 소류력 결정)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5956-5963
    • /
    • 2013
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. To evaluate soil loss, Terrestrial 3D LiDAR measurement is conducted and soil loss index are calculated from changes of bed elevation. Quantified evaluation for permissible shear stresses is conducted by graphical method for acting shear stresses and soil loss index. By the results of precision survey, changes of sub soil are limited to local range in stable cases and relatively large changes of sub soil which is similar to natural river bed are detected in unstable cases. From the study, evaluation of permissible shear stresses by ASTM D 6040 is avaliable in the failure mechanism and failure criteria by soil loss index.

Evaluation technique for efficiency of fishway based on hydraulic analysis (수리해석을 기반으로 어도 효율을 평가하는 기법)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.855-863
    • /
    • 2019
  • The efficiency of fishway installed in rivers can be directly evaluated by means of fish monitoring. On the other hand, when it is difficult to monitor the fish in certain conditions, or when planning a fishway, the efficiency can be evaluated indirectly through the hydraulic analysis. In this study, the hydraulic analysis technique for evaluating the efficiency of a fishway was presented. The River-2D model with the fish physical habitat module was used for the analysis of the attraction efficiency, and the weighted usable area was proposed as an index of the efficiency. In the analysis of passage efficiency, the three-dimensional model, Flow-3D, was used as an evaluation tool to describe the fluid behavior on a hydraulic structure with free surface. The ice-harbor type fishway at Baekgok weir in the Deokcheon River was selected as a test-site, and the efficiency was estimated using the hydraulic analysis. And then it was compared with fish monitoring data acquired from the river. As a result, it is difficult to replace the hydraulic analysis results with the efficiency quantitatively, but it can help to grasp the general tendency.

Experimental Analysis of the Morphological Changes of the Vegetated Channels (실내실험에 의한 식생하도의 지형변동 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.909-919
    • /
    • 2013
  • This study examines the hydraulic characteristics, the channel changes, the behavior of bars, and bank stability by means of laboratory experiments. Three sets of laboratory experiments are conducted to elucidate the influence of riparian vegetation of the channels with erodible banks. Flow velocity is decreased in the vegetated zone, the mobility of lower channels is decreased. The double Fourier analysis of the bed waves shows that 1-1 mode (alternate bar) is dominant at the initial stage of the channel development. As time increases, 2-2 and 2-3 modes (central or multiple bars) are dominant due to the increased width to depth ratio. As the vegetation density is increased, the number of bars are increased, bank stability increases. The variation of sediment discharges is affected by vegetation density. The braided intensity is decreased with vegetation density. As the vegetation density is increased, the correlation coefficient of bed topography and bed relief index is increased.

Assessment of Soil Contamination and Hydrogeochemistry for Drinking Water Sites in Korea (국내 먹는샘물 개발지역의 토양 오염 평가 및 수리지구화학적 특성)

  • 이두호;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Geochemical data of soil and water samples were presented in order to assess the environmental impart for drinking water sites. Microscopic observation of rock samples and physical and chemical analysis of soil and water samples were undertaken. The geology of study areas are classified into three groups such as granitic rocks, meta-sedimentary rocks and sedimentary rocks. Enrichment of heavy metals derived from those rocks is not found in this study areas. Soils were analyzed for Cu, Pb, Zn, Cd and Cr using AAS extracted by HNO$_3$+HClO$_4$ and 0.1 N HCl. Heavy metal concentrations in soils are within the range of those in uncontaminated soils. In comparison of metal contents extracted by 0.1 N HCl and HNO$_3$+HC1O$_4$, less than 10% of the heavy metals are present in the exchangeable fraction. In particular, an pollution index has been proposed to assess the degree of soil contamination. Pollution index in soils are between 0.03 and 0.47 therefore, soils are not polluted with heavy metals. Deep groundwaters within granitic rocks have been evolved into Na$\^$+/-HCO$_3$$\^$-/ type, whereas other deep groundwaters evolved into Ca$\^$2+/-HCO$_3$$\^$-/ type. The predominance of Na$\^$+/ over Ca$\^$2+/ in deep groundwaters within granitic rocks is a result of dissolution of plagioclase, but for sedimentary and meta-sedimentary rocks, dissolution of calcite is a dominant factor for their hydrogeochemistry. The pH, conductivity and contents of the most dissolved ions in the water increase with depth. Shallow groundwaters, however, are highly susceptible to pollution owing to agricultural activities, considering the fact that high contents of nitrate, chloride and potassium, and high K/Na ratio are observed in some shallow groundwaters. In a thermodynamic approach, most natural water samples are plotted within the stability fields of kaolinite and smectite. Therefore, microcline and other feldspars will alter to form clay minerals, such as kaolinite and smectite. From the modelling for water-rock interactions based on mass balance equation, models accord well with behavior of the ions and results of thermodynamic studies are derived.

  • PDF

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Hydrochemistry of Groundwater at Natural Mineral Water Plants in the Okcheon Metamorphic Belt (옥천계변성암 지역의 먹는샘물 지하수의 수리지구화학적 특성)

  • 추창오;성익환;조병욱;이병대;김통권
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.93-107
    • /
    • 1998
  • Because of its stable quantity and quality, groundwater has long been a reliable source of drinking water for domestic users. Rapid economic growth and rising standards of living have in recent years put severe demands on drinking water supplies in Korea. Groundwaters that are currently being used for natural mineral water were hydrochemically evaluated and investigated in order to maintain their quality to satisfy strict health standards. There exist 15 natural mineral water plants in the Okcheon metamorphic belt. Characteristics of groundwaters are different from those of other areas in that electrical conductivity, hardness, contents of Ca, Mg and $HCO_3$are relatively high. The content of major cations is in the order of Ca>Mg, Na>K, whereas that of major anions shows the order of $HCO_3$>$SO_4$>Cl>F. The fact that the Ca-Mg-HCO$_3$type is mostly predominant among water types reflects that dissolution of carbonates that are abundantly present in the metamorphic rocks plays an important part in groundwater chemistry. Representative correlation coefficients between chemical species show Mg-$HCO_3$(0.92), Ca-$HCO_3$(0.88), Ca-Mg(0.80), Ca-Cl(0.78), Mg-$SO_4$(0.78), Ca-$SO_4$(0.71), possibly due to the effect by dissolution of carbonates, gypsum or anhydrite. Determinative coefficients between some chemical species represent a good relationship, especially for EC-(K+Na+Ca), Ca-$HCO_3$, Ca-Mg, indiacting that they are similar in chemical behaviors. According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite and dolomite, whereas it is still greatly undersaturated with respect to gypsum, anhydrite and fluorite, Based on the Phase equilibrium in the systems $NA_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O and $K_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O, it is clear that groundwater is in equilibrium with kaolinite, evolved from the stability area of gibbsite during water-rock interaction. It is expected that chemical evolution of groundwater continue to proceed with increasing pH by reaction of feldspars, with calcite much less reactive.

  • PDF