DOI QR코드

DOI QR Code

Experimental Analysis of the Morphological Changes of the Vegetated Channels

실내실험에 의한 식생하도의 지형변동 특성 분석

  • Jang, Chang-Lae (Dept. of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 토목공학과)
  • Received : 2013.05.10
  • Accepted : 2013.07.08
  • Published : 2013.09.30

Abstract

This study examines the hydraulic characteristics, the channel changes, the behavior of bars, and bank stability by means of laboratory experiments. Three sets of laboratory experiments are conducted to elucidate the influence of riparian vegetation of the channels with erodible banks. Flow velocity is decreased in the vegetated zone, the mobility of lower channels is decreased. The double Fourier analysis of the bed waves shows that 1-1 mode (alternate bar) is dominant at the initial stage of the channel development. As time increases, 2-2 and 2-3 modes (central or multiple bars) are dominant due to the increased width to depth ratio. As the vegetation density is increased, the number of bars are increased, bank stability increases. The variation of sediment discharges is affected by vegetation density. The braided intensity is decreased with vegetation density. As the vegetation density is increased, the correlation coefficient of bed topography and bed relief index is increased.

본 연구에서는 실내실험을 통하여 식생의 변화에 따른 하도의 수리학적특성, 저수로의 변화, 사주의 거동, 하안의 안정성 등을 정량적으로 파악하였다. 실내실험은 기존에 인공식생 대신에 수로에서 실제식생인 알팔파를 성장시켜서 수행하였다. 식생대에서는 유속이 매우 느리며, 저수로의 이동이 감소하였다. 2중 퓨리에 해석 결과, 교호사주의 특성을 나타낸 1-1모드의 진폭이 지배적이지만, 시간이 증가하면서 복렬사주의 특성을 나타내는 2-2와 2-3모드의 진폭이 증가하였다. 식생에 의하여 저수로가 고착화 되어 하도의 안정성이 증가하고, 하도 내 사주의 이동속도는 감소하지만, 하상이 불규칙하게 변하면서, 사주의 수는 증가하였다. 식생의 밀도가 증감함에 따라 하안의 안정성은 증가하였다. 식생의 밀도가 증가함에 따라 유사의 유출량과 유출량의 변동성이 감소하였다. 또한 망상화 강도는 감소하지만, 하도의 상관계수와 하상의 기복지수(BRI)는 증가하는 특성을 보여주었다.

Keywords

References

  1. Defina, A., and Bixio, A.C. (2005). "Mean flow and turbulence in vegetated open channel flow." Water Resour. Res., Vol. 41, W07006.
  2. Egozi, R., and Ashmore, P. (2008). "Defining and measuring braiding intensity." Earth Surf. Process. Landforms., Vol. 33, pp. 2121-2138, doi:10.1002/esp.1658
  3. Gran, K., and Paola, C. (2001). "Riparian vegetation controls on braided stream dynamics." Water Resour. Res., Vol. 37, No. 12, pp. 3275-3283. https://doi.org/10.1029/2000WR000203
  4. Hasegawa, K. (1984). Hydraulic research on planimetric forms, bed topographies and flow in alluvial rivers, PhD Dissertation, Hokkaido University, Japan (in Japanese).
  5. Hoey, T. B., and Sutherland, A.J. (1991). "Channel morphology and bedload pulses in braided rivers: A laboratory study." Earth Surf. Process. Landforms., Vol. 16, pp. 447-462. https://doi.org/10.1002/esp.3290160506
  6. Ikeda, S., and Izumi, N. (1990). "Width and depth of selfformed straight gravel rivers with bank vegetation." Water Resour. Res., Vol. 26, No. 10, pp. 2353-2364. https://doi.org/10.1029/WR026i010p02353
  7. Jang, C.-L. (2013). "Dynamic characteristics of multiple bars in the channels with erodible banks." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 1, pp. 25-34. https://doi.org/10.3741/JKWRA.2013.46.1.25
  8. Jang, C.-L., and Shimizu, Y. (2007). "Vegetation effects on the morphological behavior of alluvial channels." Journal of Hydraulic Research, Vol. 45, No. 6, pp. 763-772. https://doi.org/10.1080/00221686.2007.9521814
  9. Jang, C.-L., and Shimizu, Y. (2010). "Numerical simulation of sand bars downstream of Andong Dam." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 379-388.
  10. Kadlec, R.H. (1990). "Overland flow in wetland: vegetation resistance." J. Hydraul. Engrg., ASCE, Vol. 116, No. 5, pp. 691-706. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(691)
  11. Kondolf, G.M., and Wolman, M.G. (1993). "The sizes of salmonid spawning gravels." Water Resour. Res., Vol. 29, pp. 2275-2285. https://doi.org/10.1029/93WR00402
  12. Kouwen, N., and Li, R.-M. (1980). "Biomechanics of vegetative channel linings." J. Hydraul. Div., ASCE, Vol. 106, pp. 1085-1103.
  13. Lopez, M., and Garcia, M. (2001). "Mean flow and turbulence strucuture of open channel flow through non-emergent vegetation." J. Hydraul. Engrg., ASCE, Vol. 127, pp. 392-402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  14. Millar, R.G., and Quick, M.C. (1993). "Effect of bank of vegetation on channel pattern in bedload rivers." J. Hydraul. Engrg., ASCE, Vol. 119, No. 12, pp. 1343-1363. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:12(1343)
  15. Murray, A.B., and Paola, C. (2003). "Modelling the effect of vegetation on channel pattern in bedload rivers." Earth Surf. Process. Landforms., Vol. 28, pp. 131-143. https://doi.org/10.1002/esp.428
  16. Nepf, H.M. (1999). "Drag, turbulence, and diffusion in flow through emergent vegeation." Water Resour. Res., Vol. 35, No. 2, pp. 479-489. https://doi.org/10.1029/1998WR900069
  17. Nepf, H.M., and Vivoni, E.R. (2000). "Flow structures in depth-limited, vegetated flow." Journal of Geophysical Research, Vol. 105(C12), No. 28, pp. 547-557.
  18. Tal, M., and Paola, C. (2010). "Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments." Earth Surf. Process. Landforms., Vol. 35, pp. 1014-1028. DOI:10.1002/esp.1908
  19. Thorne, C.R. (1990). Effects of vegetation on riverbank erosion and stability in vegetation and erosion, edited by Thornes, J.B., John Wiley, New York, 125-144.
  20. Thorne, C.D., and Furbish, D.J. (1995). "Influences of coarse bank roughness on flow within a sharply curved river bend." Geomorphology, Vol. 12, pp. 241-257. https://doi.org/10.1016/0169-555X(95)00007-R
  21. Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." J. Hydraul. Res., Vol. 106, No. 6, pp. 789-803.

Cited by

  1. Experimental Study on the Sediment Sorting Processes of the Bed Surface by Geomorphic Changes in the Alluvial Channels with Mixed Grain Size vol.47, pp.12, 2014, https://doi.org/10.3741/JKWRA.2014.47.12.1213