DOI QR코드

DOI QR Code

Development and Application of Robust Decision Making Technique Considering Uncertainty of Climatic Change Scenarios

기후변화 시나리오의 불확실성을 고려하기위한 로버스트 의사결정 기법의 개발 및 적용

  • Jun, Sang-Mook (Dept. of Civil Eng., Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Dept. of Civil Eng., Seoul National University of Science and Technology) ;
  • Lee, Sang-Ho (Dept, of Civil Eng., Pukyung National University) ;
  • Kim, Yeonjoo (Korea Environmental Institute)
  • 전상묵 (서울과학기술대학교 건설시스템디자인학과) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인학과) ;
  • 이상호 (부경대학교 건설환경공학부) ;
  • 김연주 (한국환경정책평가원)
  • Received : 2013.02.15
  • Accepted : 2013.07.04
  • Published : 2013.09.30

Abstract

Climate change is expected to worsen the depletion of streamflow in urban watershed. In this study, we therefore considered the treated wastewater (TWW) use as an adaptation strategy and devised a framework to identify prioritized areas for TWW use. An integrated framework that includes hydrological factors as well as social and environmental components were employed to determine the criteria for decision making. Fuzzy theory was employed to consider the uncertainties in the climate change scenarios and the weights of the performance value. All alternatives were evaluated using the fuzzy TOPSIS method. In addition, statistical method and decision making methods under complete uncertainty were used for robust decision making. As a result, ranking the alternatives using the fuzzy TOPSIS method and robust approach such as maximin, maximax, Hurwicz and equal likelihood criterion mitigated the level of uncertainty and ambiguity in each alternative. The finding of this study can be helpful in prioritizing water resource management projects considering various climate change scenarios.

기후변화에 따른 도시하천의 건천화 현상은 앞으로 더욱더 심각해질 것으로 예상되고 있다. 따라서 본 연구에서는 건천화의 적응전략으로서 하수처리수 재이용을 선정하였고 어느 지영기 우선적으로 선정되어야 하는가를 결정할 수 있는 방법을 제시하였다. 평가기준은 수문학적인 요소뿐만 아니라 인문 사회적인 요소도 포함하였다. 평가치와 가중치의 불확실성을 고려하기 위해 퍼지 이론을 사용하여서 기후변화로 인해 변화된 평가치와 평가기준에 대한 가중치의 불확실성을 완화하고자 하였다. Fuzzy TOPSIS 방법을 이용하여 각 대안을 평가하였다. 또 한로 버스트한 의사결정을 위해서 통계적인 기법과 maximin, maximax, Hurwicz, equal likelihood criterion 방법을 사용하였다. 그 결과 Fuzzy TOPSIS를 통한 대안의 순위 선정과 로버스트 의사결정기법을 통해 불확실성과 순위의 애매모호함을 완화시켰다. 본 연구에서 제시한 방법은 하수처리수 재이용의 위치선정 뿐만 아니라 다양한 기후변화 시나리오를 고려한 수자원 사업의 우선순위를 결정하는데 사용될 수 있다.

Keywords

References

  1. ASCE Task Committee on Sustainability Criteria (1998). "Sustainability criteria for water resource system." American Society of Civil Engineers, Reston, VA.
  2. Awasthi, A., Chauhan, S.S., and Omrani, H. (2011a). "Application of fuzzy TOPSIS in evaluation sustainable transportation systems." Expert Systems with Applications, Vol. 38, pp. 12270-12280. https://doi.org/10.1016/j.eswa.2011.04.005
  3. Awasthi, A., Chauhan, S.S., Omrani, H., and Panahi, A. (2011b). "A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality." Computer & Industrial Engineering, Vol. 61, pp. 637-646. https://doi.org/10.1016/j.cie.2011.04.019
  4. Belinda, H., Ana, D., and Tim, D.F. (2006). "Integrated treatment and recycling of stormwater: A review of Australian practice." Journal of Environmental Management, Vol. 79, No. 1, pp. 102-113. https://doi.org/10.1016/j.jenvman.2005.06.003
  5. Bicknell, B.R., Imhoff, J.C., Kittle, J.L. Jr., Jobes, T.H., and Donigian, A.S. (2001). Hydrologic Simulation Program-Fortran (HSPF) User's Manual for Version 12. US. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA.
  6. Cai, X.M., and Lasdon, L.S. (2002). "A framework for sustainability analysis in water resources management and application to the Syr Darya Basin."Water Resources Research, Vol. 39, No. 8, pp. 1085-1098.
  7. Chung, E.S., and Lee, K.S. (2009). "Prioritization of water management for sustainability using hydrologic simulation model and multi-criteria decision making techniques." Journal of Environmental Management, Vol. 91, pp. 1502-1511.
  8. Dooley, J.J., and Calvin, K.V. (2011). "Temporal and spatial deployment of carbon dioxide capture and storage technologies across the representative concentration pathways." Energy Procedia, Vol. 4, pp. 5845-5852. https://doi.org/10.1016/j.egypro.2011.02.583
  9. Ellsberg, D. (2001). Risk, Ambiguity, and Decision. Garland Publishing, New York.
  10. Hasimoto, T., Loucks, D.P., and Stedinger J.R. (1982). "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  11. Ioannis, K., and Charis, A. (2007). "An Integrated environmental plan for the reuse of treated wastewater effluents from WWTP in urban areas." Building and Environment, Vol. 42, pp. 1862-1868. https://doi.org/10.1016/j.buildenv.2006.07.016
  12. Kang, N.E., Kim, Y.O., Jung, E.S., and Park, J.H. (2013). "Applicability of robust decision making for a water supply planning under climate change uncertainty." Climate Change Research, Vol. 4, No. 1, pp. 11-26.
  13. Kim, Y., and Chung, E.S. (2012). "Integrated assessment of climate change and urbanization impact on adaptation strategies: A case study in two small Korean watersheds." Climatic Change, Vol. 115, No. 3-4, pp. 853-872. https://doi.org/10.1007/s10584-012-0612-4
  14. Kim, Y.K., Chung, E.S., and Lee, K.S. (2012). "Fuzzy TOPSIS approach to flood vulnerability assessment in Korea." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 901-913. https://doi.org/10.3741/JKWRA.2012.45.9.901
  15. Lee, J., Pak, G., Yoo, C., Kim, S., and Yoon, J. (2010). "Effects of land use change and water reuse options on urban water cycle." Journal of Environmental Sciences, Vol. 22, No. 6, pp. 923-928. https://doi.org/10.1016/S1001-0742(09)60199-6
  16. Lee, K.S., Chung, E.S., Kim, Y.O., and Cho, T.G. (2006). "Sustainable water resources planning to prevent streamflow depletion in an urban watershed: 1. Methodology." Journal of Korea Water Resources Association, Vol. 39, No. 11, pp. 935-946. https://doi.org/10.3741/JKWRA.2006.39.11.935
  17. Lempert, R.J., and Schlesinger, M.E. (2000). "Robust strategies for abating climate change." Climatic Change, Vol. 45, No. 3, pp. 387-401. https://doi.org/10.1023/A:1005698407365
  18. Mitchell, V.G., Mein, R.G., and McMahon, T.A. (2002). "Utilising stormwater and wastewater resuouces in urban areas." Australian Journal ofWater Resources, Vol. 6, No. 1, pp. 31-43. https://doi.org/10.1080/13241583.2002.11465208
  19. OECD (1998). Towards Sustainable Development: Environmental Indicators.
  20. Sa-nguanduan, N., and Nititvattananon, V. (2011). "Strategic decision making for urban water reuse application: A case from Thailand." Desalination, Vol. 268, pp. 141-149. https://doi.org/10.1016/j.desal.2010.10.010
  21. Stevenson, W., and Ozgur, C. (2006). Introduction to Management Science with Spreadsheets. McGraw- Hill International Edition.

Cited by

  1. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  2. Robust Decision-Making Technique for Strategic Environment Assessment with Deficient Information pp.1573-1650, 2018, https://doi.org/10.1007/s11269-018-2066-6