DOI QR코드

DOI QR Code

SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale

대규모 산지유역 토양침식 평가를 위한 SEMMA 개선

  • Shin, Seung Sook (Institute for Disaster Prevention, Gangneung-Wonju National University) ;
  • Park, Sang Deog (Dept. of Civil Engineering, Gangneung-Wonju National University) ;
  • Lee, Jong Seol (Safety Research Division, National Disaster Management Institute) ;
  • Lee, Kyu Song (Dept. of Biology, Gangneung-Wonju National University)
  • 신승숙 (강릉원주대학교 방재연구소) ;
  • 박상덕 (강릉원주대학교 토목공학과) ;
  • 이종설 (국립재난안전연구원 안전연구실) ;
  • 이규송 (강릉원주대학교 생물학과)
  • Received : 2013.05.14
  • Accepted : 2013.06.26
  • Published : 2013.09.30

Abstract

SEMMA (Soil Erosion Model for Mountain Areas) should be revised to apply on mountain watershed of large scale. In this study, the basic structure of original SEMMA and methods to calculate main parameters are reviewed and the revised parameters are presented to expand a range of application. SEMMA-Ic is new model revised by a rate of vegetation cover which is substituted for index of vegetation structure to use specially NDVI for large scale areas. The correlation coefficient and the Nash-Sutcliffe simulation efficiency for the revised model decreased rather than those of original model. However the evaluation of the revised model on watershed showed the approximate simulation with measured sediment yield and the underestimated simulation when sediment yield is large. The additional research for channel erosion is needed so that soil erosion model for hillslopes is used to estimate sediment yield from a watershed.

산지의 토양침식 모형인 SEMMA를 대규모 산지유역에 적용하기 위해서는 모형의 개선이 필요하다. 본 연구에서는 원래 SEMMA의 기본구조와 주요 매개변수의 산정방법을 설명하였고, 적용범위 확대를 위한 개선 매개변수들을 제시하였다. 특히 광범위한 지역에 대해 NDVI를 활용하기 위하여 식생구조지수 대신 식생피복지수를 사용하여 개선된 모형 SEMMA-Ic을 개발하였다. 개선모형의 모의결과 상관계수와 모의효율계수는 본래 모형보다 다소 감소하였다. 그러나 개선모형을 유역에 적용한 결과 실측값에 근접하게 모의했고, 토사유출량이 많은 경우에는 과소 예측하는 경향을 보였다. 따라서 산지 사면에서 개발한 토양침식 모형을 유역에 적용하기 위해서는 수로침식에 대한 추가적인 연구가 필요하다.

Keywords

References

  1. Bhuyan, S.J., Kaltia, P.K., Janssen K.A., and Barnes, P.L. (2002). "Soil loss Predictions with three erosion simulation models." Environmental Modeling & Software, Vol. 17, pp. 137-146.
  2. Brandt, C.J. (1990). "Simulation of the size distribution and erosivity of raindrops and throughfall drops." Earth Surf. Process. Landforms. Vol. 15, pp. 687-698. https://doi.org/10.1002/esp.3290150803
  3. Brown, L.C., and Foster, G.R. (1987). "Storm erosivity using idealized intensity distributions." Transaction of the American Society of Agricultural Engineers, Vol. 30, pp. 379-386. https://doi.org/10.13031/2013.31957
  4. Choi, J.W., Shin, M.H., Cheon, S.U., Shin, D.S., Lee, S.J., Moon, S.J., Ryu, J.C., and Lim, K.J. (2011). "Evaluation of runoff prediction from a coniferous forest watersheds and runoff estimation under various cover degree scenarios using GeoWEPP watershed model." Journal of Korean Society on Water Environment, Vol. 27, No. 4, pp. 425-432.
  5. Coutinho, M.A., and Tomas, P.P. (1995). "Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center." Catena, Vol. 25, pp. 187-197. https://doi.org/10.1016/0341-8162(95)00009-H
  6. De Asis, A.M. and Omasa, K. (2007). "Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of landsat ETM data." Journal of Photogrammetry & Remote Sensing, Vol. 62, pp. 309-324. https://doi.org/10.1016/j.isprsjprs.2007.05.013
  7. De Jong, S.M. (1994). Applications of reflective remote sensing for land degradation studies in a mediterranean Environment, Ph.D. Thesis, Utrecht University, Utrecht.
  8. Desmet, P.J.J., and Govers, G.G. (1996). "A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units." Journal of Soil and Water Conservation, Vol. 51, No. 5. pp. 427-433.
  9. Drake, N.A., Zhang, X., Berkhout, E., Bonifacio, R., Grimes, D., Wainwright, J., and Mulligan, M. (1997). Modeling soil erosion at global and regional scales using remote sensing and GIS techniques, Spatial Analysis for Remote Sensing and GIS, Edited by P. Atkinson, pp. 241-261.
  10. Elwell, H.A. (1978). "Modelling soil losses in Southern Africa." Journal ofAgricultural Engineering Research, Vol. 2, No. 3, pp. 117-127.
  11. Flanagan, D.C., and Nearing, M.A. (eds)(1995). USDAWater Erosion Prediction Project (WEPP) version 95.7, hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory Report 10. US Department of Agriculture-Agricultural Search Service, West Lafayette.
  12. Foster, G.R., Meyer, L.D., and Onstad, D.A. (1977). "A runoff erosivity factor and variable slope length exponents for soil loss estimates." Transaction of the American Society of Agricultural Engineering, Vol. 20, No. 4, pp. 683-687. https://doi.org/10.13031/2013.35628
  13. Gilley, J.E., Woolhiser, D.A., and McWhorter, D.B. (1985). "Interrill soil erosion-Part II: Testing and use of model equations." Transaction of the American Society of Agricultural Engineers, Vol. 28, pp. 154-159. https://doi.org/10.13031/2013.32219
  14. Heusch, B. (1970). "L'erosion du Pre-Rif. Une etude quantitative de l'erosion hydraulique dans les collines marneuses du Pré-Rif occidental." Annales de Pecherches Forestiéres de Maroc, Vol. 12, pp. 9-176.
  15. Hudson, N.W. (1965). The influence of rainfall on the mechanics of soil erosion. Hudson, N.W. (1965). The influence of rainfall on the mechanics of soil erosion. MSc, Thesis, University of Cape Town, South Africa., University of Cape Town, South Africa.
  16. Jayawardena, A.W., and Rezaur, R.B. (2000). "Drop size distribution and kinetic energy load of rainstorms in Hong Kong." Hydrol. Process., Vol. 14, pp. 1069-1082. https://doi.org/10.1002/(SICI)1099-1085(20000430)14:6<1069::AID-HYP997>3.0.CO;2-Q
  17. Kim, G.H., Lee, J.S., Jung, J.H., and Won, S.Y. (2011). "A comparative analysis of field surveying vegetation data and NDVI from KOMPSAT-2 satellite imagery." Journal of Korean Society of Surveying Geodesy Photogrammetry and Cartography, Vol. 29, No. 4, pp. 405-411. https://doi.org/10.7848/ksgpc.2011.29.4.405
  18. Kim, M.S., Kim, J.K., and Yang, D.Y. (2007). "Application and comparision of GeoWEPP model and USEL model to natural small catchment-A case study in Danwol-dong, Icheon-si." Econ. Environ. Geol., Vol. 40, No. 1, pp. 103-113.
  19. Kinnell, P.I.A. (1981). "Rainfall intensity kinetic-energy relationships for soil loss prediction." Soil Sci. Soc. Am. J ., Vol. 45, No. 1, pp. 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x
  20. Klik, A., and Zartl, A.S. (2001). "Comparison of Soil Erosion Simulations Using WEPP and RUSLE with Field Measurements." Soil Erosion Research for the 21st Centry, ASAE.701P0007, pp. 350-353.
  21. Korean Soil Information System. www.soil.rda.go.kr
  22. Lee, J.S. (2007). A study on characteristic analysis of soil erosion models in Korea and foreign country. Report No. NIDP-PR-2007-05-01, National Institute for Disaster Prevention, pp. 145-167.
  23. Lee, J.S., and Won, J.Y. (2012) "Suggestion of covermanagement factor equation for mountain area in RUSLE." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 79-85. https://doi.org/10.9798/KOSHAM.2012.12.2.079
  24. Lee, K.S., and Park, S.D. (2005). "Relationship between the aboveground vegetation structure and fine roots of the topsoil in the burnt forest areas, Korea." Journal of Ecology Field Biology, Vol. 28, No. 3, pp. 149-156. https://doi.org/10.5141/JEFB.2005.28.3.149
  25. Lee, K.S., Choung, Y., Kim, S.C., Shin, S.S., Ro, C.H., and Park, S.D. (2004). "Development of vegetation structure after forest fire in the east coastal region." Korea. Journal of Ecology Field Biology, Vol. 27, No. 2, pp. 99-106. https://doi.org/10.5141/JEFB.2004.27.2.099
  26. Lim, K.J., Saggong, M., Engel, B.A., Tang, Z., Choi, J., and Kim, K.S. (2005). "GIS-based sediment assessment tool." CATENA, Vol. 64, pp. 61-80. https://doi.org/10.1016/j.catena.2005.06.013
  27. Luce, C.H. (1995). "Forests and wetlands." In: Ward, A.D., Elliot, W.J. (Eds.), Environmental Hydrology. Lewis Publishers, Boca Raton, FL, pp. 253-283.
  28. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1987). "Revised slope steepness factor for the Universal Soil Loss Equation." Trans. Am. Soc. Agric. Eng., Vol. 30, No. 5, pp. 1387-1396. https://doi.org/10.13031/2013.30576
  29. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1989). "Revised slope length factor for the Universal Soil Loss Equation." Trans. Am. Soc. Agric. Eng., Vol. 32, No. 5, pp. 1571-1576. https://doi.org/10.13031/2013.31192
  30. McCool, D.K., Foster, G.R., and Weesies, G.A. (1993). "Slope length and steepness factor." In Predicting Soil Erosion byWater-A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., eds.), Chap. 4, USDA-ARS Special Publication.
  31. Moon, J.P., Kim, T.C., Lee, S.H., Kwon, J.K., Lee, S.J., and Lim, K.J. (2010). "Soil erosion reduction plan for watershed with sloping fields of highland agriculture by using GEOWEPP model." Journal of the Korean Society of Agricultural Engineers, Vol. 52, No. 6, pp. 135-144. https://doi.org/10.5389/KSAE.2010.52.6.135
  32. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models. Part I. A discussion of principles." J. Hydrol., Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  33. National Disaster Management Institute (2011). Soil erosion analysis system based on Web GIS. Publication No. 11-1311526-000015-14, pp. 29-32.
  34. Nearing, M.A. (1998). "Why soil erosion models overpredict small soil losses and uner-predict large soil losses." CATENA, Vol. 32, pp. 15-22. https://doi.org/10.1016/S0341-8162(97)00052-0
  35. Odemerho, F.O. (1986). "Variation in erosion-slope relationship on cut slopes along a tropical highway." Singapore Journal of Tropical Geography, Vol. 7, pp. 98-107. https://doi.org/10.1111/j.1467-9493.1986.tb00175.x
  36. Oh, D.K., Kim, J.H., and Shim, S.B. (2002). "Analysis of watershed soil loss using GIS (II)." Journal of the Korean Society of Civil Engineers, Vol. 22, No. 4B, pp. 421-428.
  37. Park, S.D. (2008). "Estimation of WEPP's parameters in burnt mountains." Journal of Korea Water Resources Association, Vol. 41, No. 6, pp. 565-574. https://doi.org/10.3741/JKWRA.2008.41.6.565
  38. Park, S.D., and Shin, S.S. (2011). "Applying evaluation of soil erosion models for burnt hillslopes-RUSLE, WEPP, and SEMMA." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 3B, pp. 59-71.
  39. Park, S.D., Lee, K.S. Kim, G.H., Shin, S.S., Chae, K.S., Cho, J.W., Kim, M.K., Kwag, T.B., and Hong, S.C. (2006). An estimation plan of the parameters for the soil erosion model considering regional characteristic. Publication No. 11-1660080-000017-01, National Institute for Disaster Prevention, pp. 4-26.
  40. Park, S.D., Lee, K.S., and Shin, S.S. (2012). "Statistical Soil Erosion Model for Burnt Mountain Areas in Korea-RUSLE Approach." Journal of Hydrological Engineering, Vol. 17, No. 2, pp. 292-304. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000441
  41. Park, S.D., Lee, K.S., Kim, K.H., Shon, G.I., Lee, H.S., Kim, M.M., Kwon, H.H., and Shin, S.S. (2010). Operation of the experimental watersheds for sediment and deriving vegetation parameters in national mountain areas. National Institute for Disaster Prevention, pp. 311-366.
  42. Park, S.D., Lee, K.S., Shin, S.S., Chae, K.S., Kim, T.G., and Won, D.K. (2005a). A basic study on the development of the soil erosion model in the mountain area (SEMMA). Publication No. 11-1660030-00035-01, National Institute for Disaster Prevention, pp. 55-64.
  43. Park, S.D., Shin, S.S., and Lee, K.S. (2005b). "Sensitivity of runoff and soil erosion in the burnt mountains." Journal of Korea Water Resources Association, Vol. 38, No. 1, pp. 59-71. https://doi.org/10.3741/JKWRA.2005.38.1.059
  44. Poesen, J. (1981). "Rainwash experiments on the erodibility of loose sediments." Earth Surface Processes and Landforms, Vol. 6, pp. 285-307. https://doi.org/10.1002/esp.3290060309
  45. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Epuation (RUSLE). US Department of Agriculture Handbook 703. US Department of Agriculture-Agricultural Search Service, Washington DC.
  46. Renschler, C.S. (2003). "Designing geo-spatial interfaces to scale process models: The GeoWEPP approach." Hydrological Processes, Vol. 17, pp. 1005-1017. https://doi.org/10.1002/hyp.1177
  47. Savat, J. (1982). "Common an uncommon selectivity in the process of fluid transportation : field observations and laboratory experiments on bare surfaces." CATENA Supplement, Vol. 1, pp. 139-60.
  48. Shin, S.S. (2002). A study on the sediment runoff of mountain watersheds. MSc, Thesis, Kangnung National University, Gangneung, Gangwon, Republic of Korea.
  49. Shin, S.S., Park, S.D., and Lee, K.S. (2013). "Sediment and hydrological response to vegetation recovery following wildfire on hillslope and the hollow of a small watershed." Journal of Hydrology, Vol. 499, pp. 154-166. https://doi.org/10.1016/j.jhydrol.2013.06.048
  50. Shin, S.S., Park, S.D., Cho, J.W., and Lee, K.S. (2008). "Effects of vegetation recovery for surface runoff and soil erosion in burned mountains, Yangyang." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 4B, pp. 393-403.
  51. Steiner, M., and Smith, J.A. (2000). "Reflectivity rain rate and kinetic enegy flux relationships based on raindrop spectra." J. Appl. Meteorol., Vol. 39, pp. 1923-1940. https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2
  52. Uijlenhoet, R., and Stricker, J.N.M. (1999). "A consistent rainfall parameterization based on the exponential raindrop size distribution." J. Hydrol., Vol. 218, pp. 101-127. https://doi.org/10.1016/S0022-1694(99)00032-3
  53. Van der Knijff, J.M., Jones, R.J.A., and Montanarella, L. (1999). Soil Erosion Risk in Italy, EUR 19022 EN, Office for Official Publications of the European Communities, Luxembourg.
  54. Van Dijk, A.I.J.M., Bruijnzeel, L.A., and Rosewell,C.J. (2002). "Rainfall intensity-Kinetic energy relationships." Journal of Hydrology, Elsevier Science B.V., pp. 1-23.
  55. Voroney R.P., van Veen, J.A., and Paul, E.A. (1981). "Organic carbon dynamics in grassland soils. II. Model validation and simulation of the long-term effects of cultivation and rainfall erosion." Canadian Journal of Soil Science, Vol. 61, No. 211-224.
  56. Wischmeier, W.H., and Smith, D.D. (1958). "Rainfall energy and its relationship to soil loss." Trans. AGU Vol. 39, pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  57. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture hand book 282. US Department of Agriculture, Washington DC
  58. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washingtion DC.
  59. Yariv, S. (1976). "Comments on the mechanism of soil detachment by rainfall." Geoderma., Vol. 15, pp. 393-399. https://doi.org/10.1016/0016-7061(76)90043-4