• Title/Summary/Keyword: 수경재배 시스템

Search Result 121, Processing Time 0.026 seconds

Development of a Hydroponic recycling system using the Visible Light-reactive Titanium Oxide Photo Catalist for Sterilization and Purification of Nutrient Solution(I) -determination of factors- (가시광 응답형 산화티탄 광촉매에 의한 수경재배의 배양액 재이용 살균 및 정화 시스템 개발(I) - 요인시험 -)

  • Lee, Gi-Myeong;Lee, Jun-Tak;Jeong, Seong-Won;Lee, Han-Yong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.11 no.2
    • /
    • pp.221-226
    • /
    • 2006
  • PDF

Changes in Inorganic Element Concentrations of Drained Nutrient Solution and Leaves in Compliance with Numerical Increment of Fruiting Node during Hydroponic Cultivation of Cherry Tomato (방울토마토 수경재배 시 착과 절위 증가에 따른 공급액, 배액 및 식물체의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Kim, Gyoung Je;Lee, Bong Chun;Lee, Hee Chul;Yun, Yeo Uk;Park, Soo Bok;Choi, Jong Myoung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2017
  • Production cost as well as environmental contamination can be reduced by reuse of drained nutrient solution in hydroponic. This research was conducted to obtain the information in changes in inorganic elements concentration of supplied and drained nutrient solution as well as of plant leaves. To achieve the objective, the samples of supplied and drained solution and cherry tomato leaf tissues were periodically collected and analyzed during the hydroponic cultivation. The electrical conductivity (EC) of supplied and drained nutrient solution in early growth stage of cherry tomato were measured as around $2.0dS{\cdot}m^{-1}$, but those values move up with the passage of time reaching to $2.0dS{\cdot}m^{-1}$ at flowering stage of 9th fruiting node. The pHs of drained solution in early growth stage were 6.4 to 6.7, however those showed a tendency to get lowered to 5.9 to 6.1 as time passed during the crop cultivation. The concentration differences of $NO_3-N$, P, K, Ca, and Mg between supplied and drained solution were not distinctive until flowering stages of 4th fruiting nodes, while those in drained solution moved up after the stage. The tissue N contents of leaves decrease gradually and those of K and Ca increased as crops grew. However, Tissue P and Mg contents were maintained similarly from transplant to end-crop. The above results would be used in correction of drained nutrient solution when element compositions are varied compared to supplied solution in hydroponic cultivation of tomatoes.

Appropriate Sensor Height in an Irrigation Management System by Drainage Level Sensor for Perlite Bag Culture of Cucumber and Paprika (오이와 착색단고추의 펄라이트자루재배시 배액전극제어법에서의 적정 배액전극높이 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • An experiment was conducted to test different heights of drainage level sensors in an irrigation management system for perlite bag culture of cucumber and paprika. The sensors were placed at 4, 8, 12, and 16 mm from the bottom of the container. Both cucumber and paprika did not show any significant difference in growth and yield among the treatments. However, placing the sensor at 4 mm seemed to be the best in order to prevent over-supply of water at the beginning of the day.

Actual State and Practical Use of the Factory-Style Plant Production System in Germany (독일의 공장적 식물생산시스템의 현황 및 실용화)

  • Geyer, Bernd
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.11-39
    • /
    • 1996
  • Produktionsanlagen in der Art von Pflanzenfabriken fur Gemuse haben in Nordeuropa eine lange Tradition. Der Aufbau derartiger Anlagen begann in Norwegen bereits 1980. Er war unmittelbar mil der Entwicklung hydroponischer Verfahren zur Produktion von Gemiise, insbesondere mit der Nutrient-Film-Technology verbunden. Derzeit gibt es in Nord- und Mitteleuropa (Norwegen, Finnland, Schweden, Danemark, Holland, Belgien und Deutschland) etwa 15 Gemusefabriken fur die Produktion von Kopf-und Blattsalaten sowie Krautern. (omitted)

  • PDF

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Effect of Substrate on the Production of Korean Ginseng(Panax ginseng C.A. Meyer) in Nutrient Culture (한국인삼 양액재배시 배지의 영향)

  • Dong Sik Yang;Gung Pyo Lee;Park, Kuen Woo
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.199-204
    • /
    • 2002
  • To overcome a decrease of Korean ginseng production caused by successive cropping, we have tried to develop a nutrient culture system for Korean ginseng production. For determining the optimal substrate, mixture of sand and TKS-2 (S+T), peatmoss (P), reused rockwool (RR), and granular rockwool (GR) were investigated. The overall physico-chemical properties of RR fell into the reported optimal range for the ginseng cultivation. However, bulk density of S+T was a little higher than that of soil in Korean ginseng fields. The top fresh weight of the ginseng was high in RR and S+T substrates. The root fresh and dry weights in the RR were remarkably greater than that in the conventional soil (CS) of Korean ginseng fields. In terms of ginseng quality, the vitamin C content of ginseng root in nutrient culture was higher than that in CS. However, the contents of crude saponin and total ginsenosides in ginseng between in the nutrient culture and in the soil culture did not show any significant differences.