Effect of Substrate on the Production of Korean Ginseng(Panax ginseng C.A. Meyer) in Nutrient Culture

한국인삼 양액재배시 배지의 영향

  • Dong Sik Yang (Division of Biosciences and Technology, College of Life and Environmental Science, Korea University) ;
  • Gung Pyo Lee (Institute of Natural Science, Seoul Women's University) ;
  • Park, Kuen Woo (Division of Biosciences and Technology, College of Life and Environmental Science, Korea University)
  • Published : 2002.12.01

Abstract

To overcome a decrease of Korean ginseng production caused by successive cropping, we have tried to develop a nutrient culture system for Korean ginseng production. For determining the optimal substrate, mixture of sand and TKS-2 (S+T), peatmoss (P), reused rockwool (RR), and granular rockwool (GR) were investigated. The overall physico-chemical properties of RR fell into the reported optimal range for the ginseng cultivation. However, bulk density of S+T was a little higher than that of soil in Korean ginseng fields. The top fresh weight of the ginseng was high in RR and S+T substrates. The root fresh and dry weights in the RR were remarkably greater than that in the conventional soil (CS) of Korean ginseng fields. In terms of ginseng quality, the vitamin C content of ginseng root in nutrient culture was higher than that in CS. However, the contents of crude saponin and total ginsenosides in ginseng between in the nutrient culture and in the soil culture did not show any significant differences.

한국의 인삼재배시 연작장해로 인한 생산량 감소가 문제가 되고 있다 이를 극복하기 위하여 본 연구에서는 한국인삼 재배를 위하여 양액재배 시스템을 적용하였다. 최적의 양액재배용 배지를 선발하기 위하여 모래, TSK-2 (S+T), 피트모스 (P), 재활용 암면 (RR)과 입상 암면 (GR)등의 다양한 배지를 단독 및 혼합처리구로 사용하였다. RR배지의 경우 전반적인 물리화학적 특성은 기존에 보고된 인삼배지의 토양특성과 유사하였다. S+T배지는 가밀도가 인삼용 토양보다 높았다 인삼의 지상부 생체중은 RR배지와 S+T배지에서 높았다. 인삼 뿌리의 생체중 및 건물중은 RR배지에서 가장 높았다. 인삼의 뿌리의 품질적 측면에서 vitamin C함량은 양액재배로 생육시킨 인삼이 토양에서 생육한 인삼보다 높았으나, crude saponin과 ginsenosides 함량에서는 차이를 나타내지 않았다.

Keywords

References

  1. Ando, T., O. Tanaka, S. Shibata. 1971. Chemical studies on the oriental plant drug. Syoyakugaku zasshi. 25(1):28-32
  2. AOAC. 1995. Vitamin C (total) in vitamin preparations. AOAC Official Methods of Analysis, 2:967.22
  3. Briskin, D.P. 2000. Medicinal plants and phytomedicines: Linking plant biochemistry and physiology to human health. Plant Physiol. 124:507-514 https://doi.org/10.1104/pp.124.2.507
  4. Court, W.E. 2000. Introduction. In: Court, W.E. (Ed.), Ginseng: The genus Panax. Harwood Academic Publishers, Amsterdam. pp. 1-13
  5. Han, D.W. 1998. Effects of DFT and substrate culture on the growth of Korea ginseng (Panax ginseng C.A. Meyer). MS diss., Korea Univ.
  6. Inskeep, W.P., P.R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485 https://doi.org/10.1104/pp.77.2.483
  7. Kim, D.C., S.M. Chang, J. Choi. 1995. Effects of the chemical properties of field soils on the contents of sugars and saponin in ginseng roots. Agr. Chem. Biotech. 38:72-77
  8. Kim, M.W., S.R. Ko, K.J. Choi, S.C. Kim. 1987. Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J. Ginseng Sci. 11:10-16
  9. Konsler, T.R., J.E. Shelton. 1990a. Lime and phosphorus effects on American ginseng: Growth, soil fertility, and root tissue nutrient status response. J. Amer. Soc. Hort. Sci. 115:570-574
  10. Konsler, T.R., S.W. Zito, J.E. Shelton, E.J. Staba. 1990b. Lime and phosphorus effects on American ginseng: Root and leaf ginsenoside content and their relationship. J. Amer. Soc. Hort. Sci. 115:575-580
  11. Korea Ginseng and Tobacco Research Institute. 1996. Advanced Korean ginseng. Daejoun
  12. Lee, J.C., J.S. Byen, D.J. Ahn, J.S. Jo. 1995. Effect of physical properties of soil on ginseng seedling growth in nursery bed. Kor. J. Gin. Sci. 19:287-290
  13. Lee, S.S. 1996. Effect of transplanting angle of seedling on root shape and growth of ginseng plant (Panax ginseng C.A. Meyer). Kor. J, Gin. Sci. 20:78-82
  14. Li, J-P., M. Huang, H. Teoh, R.Y.K. Man. 2000. Interations between Panax quinquefolium saponins and vitamin C are observed in vitro. Mol. Cell. Biochem. 204:77-82 https://doi.org/10.1023/A:1007028320041
  15. Li, T.S.C., G. Mazza, A.C. Cottrell, L. Gao. 1996. Ginsenosides in roots and leaves of American ginseng. J. Agric. Food. Chem. 44:717-720 https://doi.org/10.1021/jf950309f
  16. Mahady, G.B., C. Gyllenhaal, H.H.S. Fong, N.R. Farnsworth. 2000. Ginsengs: A review of safety and efficacy. Nutr. Clin. Care 3:90-101 https://doi.org/10.1046/j.1523-5408.2000.00020.x
  17. Maurice, L., Horton. 1995 Recommended soil testing procedures for the Northeastern United States. Delaware Cooperative Extension, Delaware. pp. 9-13
  18. Padh, H. 1994. Vitamins for optimal health. In: Goldberg, I. (Ed.), Functional foods: designer foods, Pharmafoods, nutraceuticals. Chapman and Hall, Florida, pp. 261-263
  19. Park, H. 1996. Research on ginseng production during the past 20 years. Kor. J. Gin. Sci. 20:472-500
  20. Park, K.W., H.Y. Hong. 1996. Selection of nutrient solution and substrates for radish growth. J. Bio. Fac. Env. 5:236-247
  21. Park, K.W. and Y.S. Kim. 1998. Hydroponics in horticulture. Academy Press, Seoul
  22. Park, K.W., Y.G. Park, G.P. Lee. 1999. Nutrient culture for Korean ginsing (Panax ginseng C.A. Meyer). Acta Hort. 481:315-319
  23. Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetable crops to salinity. Sci. Hort. 78(1):5-38
  24. Stolte, J. 1997. Manual of soil physical measurments. Version 3 Wageningen, D.L.O Starring Center, Tech. DOC. 37
  25. Taiz, L., E. Ziger. 1991. Plant physiology. The Benjamin/Cummings Publishing Company, Inc., California
  26. Thomas, S.C.L. and G. Mazza. 1999. Correlations between leaf and soil mineral concentrations and ginsenoside contents in American ginseng. Hortscience 34:85-87