• Title/Summary/Keyword: 손 특징 추출

Search Result 125, Processing Time 0.047 seconds

Hand Region Feature Point Extraction Using Vision (비젼을 이용한 손 영역 특징점 추출)

  • Jeong, Hyun-Suk;Oh, Myung-Jea;Joon, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1798_1799
    • /
    • 2009
  • 본 논문에서는 강인한 손 영역 특징 점 추출 방법을 제안한다. 제안하는 방법은 HCbCr 칼라 모델을 생성한 후 퍼지 색상 필터에 적용하여 손 후보 영역을 추출한다. 최종적으로 손 영역을 추출하기 위해서 레이블링 기법을 사용한다. 그 후, 추출된 손 영역의 실루엣을 추출하고 히스토그램 기법을 적용하여 손 영역 내의 COG를 추출 한다. 손 영역 특징 점 추출을 위해 Canny edge 기법과 Chain Code기법, DP(Douglas-Peucker)기법들을 이용하여 전처리 과정을 거쳐 1차 특징점을 추출한다. 추출된 1차 특징 점을 Convex Hull기법에 적용하여 최종적인 손 영역 특징 점을 추출한다. 마지막으로, 복잡하고 다양한 실내 환경에서의 실험을 통해 그 응용 가능성을 증명한다.

  • PDF

Efficient Hand Mouse Interface using Feature Points with Hand Gestures (손 모양 특징점 정보를 이용한 핸드마우스 인터페이스 구현)

  • Kin, Ji-Hyun;Kim, Min-Ha;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.223-226
    • /
    • 2011
  • 본 논문은 웹 카메라로부터 입력받은 영상을 이용하여 손 영역을 추출하여 마우스를 대체할 수 있는 핸드마우스를 구현한다. 먼저 웹 카메라를 이용하여 입력받은 영상에서 손 영역을 추출한다. 손영역을 추출하기 위해서 HSV 컬러 모델에서 조도 변화에 강인한 Hue값과 피부색 특징이 잘 나타나는 YcbCr 컬러 공간을 이용하여 손 후보 영역을 획득한다. 손 후보 영역에서 레이블링(labeling) 알고리즘을 적용하여 정확한 손 영역을 추출한다. 추출한 손 영역에서 무게 중심점을 구한 후, 무게 중심점으로부터 거리를 이용하여 손 영역을 분리한다. 분리된 손 영역에서 무게 중심점으로부터 거리 정보를 이용하여 손 영역의 최종 특징 점을 추출한다. 본 논문에서 제안한 방법은 추출한 손 모양의 손끝 정보를 이용하여 마우스 이벤트를 수행함으로써 사용자가 사용하기 편리한 핸드마우스를 구현하였다.

  • PDF

Hand Feature Extraction Algorithm Using Curvature Analysis For Recognition of Various Hand Gestures (다양한 손 제스처 인식을 위한 곡률 분석 기반의 손 특징 추출 알고리즘)

  • Yoon, Hong-Chan;Cho, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.13-20
    • /
    • 2015
  • In this paper, we propose an algorithm that can recognize not only the number of stretched fingers but also determination of attached fingers for extracting features required for hand gesture recognition. The proposed algorithm detects the hand area in the input image by the skin color range filter based on a color model and labeling, and then recognizes various hand gestures by extracting the number of stretched fingers and determination of attached fingers using curvature information extracted from outlines and feature points. Experiment results show that the recognition rate and the frame rate are similar to those of the conventional algorithm, but the number of gesture cases that can be defined by the extracted characteristics is about four times higher than the conventional algorithm, so that the proposed algorithm can recognize more various gestures.

Input Device of Non Touch Screen Using Hand Region Skeleton Model (손 영역 스켈레톤 모델을 이용한 비접촉 스크린 입력 장치)

  • Seo, Hyo-Dong;Kim, Hyo-Jin;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1906-1907
    • /
    • 2011
  • 본 논문에서는 손 영역 스켈레톤 모델을 이용한 비접촉식 스크린 입력 장치를 제안한다. 제안하는 방법은 HCbCr 컬러 모델을 생성한 후 손 후보 영역을 추출하고, 손 영역을 추출하기 위해 레이블링 기법을 사용한다. 손 이외의 피부를 제거하기 위해 손 크기 이하의 객체는 필터링을 거친 후 최종적인 손 영역을 추출한다. 손 영역의 특징점은 무게 중심법과 굴곡 기법을 이용하여 추출한다. 특징점을 연결하여 손의 스켈레톤 모델을 생성하고 각 손가락에 터치 이벤트를 부여한다. 손가락의 구부러진 각도를 이용하여 터치 동작을 인식 및 실행하게 된다.

  • PDF

Multi Fingertip Detection Method (다중 손끝점 검출 기법)

  • Yu, Sunjin;Koh, Wan Ki;Kim, Sang Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1718-1720
    • /
    • 2013
  • 본 논문에서는 다중 손 끝점 검출을 위해 특징 추출 기법 및 이를 기반으로 한 손 끝점 검출 알고리즘을 제안한다. 특징 추출을 위해 Local Binary Feature(LBP)을 사용하였고 특징의 차원을 축소하기 위해 Principal Component Analysis(PCA) 기법을 이용하였다. 손 끝점 판별을 위해 Reduced multivariate polynomial Model(RM) Classifier를 사용하여 실험 결과 제안된 손 끝점 검출 기법이 다양한 환경에서 동작 하는 것을 확인 하였다.

A study on hand gesture recognition using 3D hand feature (3차원 손 특징을 이용한 손 동작 인식에 관한 연구)

  • Bae Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.674-679
    • /
    • 2006
  • In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.

Effective Hand-Pose Recognition using Multi-Class SVM (다중 클래스 SVM을 이용한 효과적인 손 형태 인식)

  • Byeon, Jae-Hee;Nam, Yun-Young;Choi, Yoo-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.501-504
    • /
    • 2007
  • 본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.

  • PDF

Extraction of Feature Parameter for Performance Enhancement on Hand-Geometry Recognition System (손 모양 인식시스템에서 성능 향상을 위한 특징 파라메터 추출)

  • 박주원;김영탁;김수정;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.85-89
    • /
    • 2004
  • 최근 몇 년 동안 사람들의 고유한 생리적인 특징을 이용한 생체 인식은 새로운 학문으로서 연구 및 개발이 활발하게 진행되고 있다. Hand-Geometry는 생체 인식의 확인 그리고 취득의 편리 때문에 식별 그리고 확인을 위하여 사용되고 있다. 그러므로, 본 논문은 이러한 특징을 가지는 손의 기하학적인 Hand-Geometry 인식 시스템을 제안하고자 한다. 해부학적인 관점에서, 인간의 손은 길이, 폭, 두께, 기하학적인 모양, 손바닥의 모양, 그리고 손가락들의 기하학적인 모양까지 특성으로 나타내어 질 수 있다. 그러나 특징 데이터 가운데 사용자의 Hand-GeoMetry의 특징에 따라 길이 데이터가 변하는 것을 실험적으로 발견하였다. 따라서 이와 같은 가변적인 길이 데이터를 안정화시키기 위하여 본 논문에서는 길이 데이터의 기준점을 손톱 아래 점으로 정하고, GA를 적용하여 보다 안정된 특징점을 추출하였다. 본 논문에서 제안한 Hand-Geometry 인식 시스템은 성인 20명의 개인에 대해 100개의 측정 데이터에 기인한 확인 결과를 제시한다. 인식 과정은 320$\times$240의 이미지로 실험하였고 인식 과정의 결과는 95 %의 적중률과 0.020의 FAR로 나타났다.

  • PDF

Sign Language Recognition System Using SVM and Depth Camera (깊이 카메라와 SVM을 이용한 수화 인식 시스템)

  • Kim, Ki-Sang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.63-72
    • /
    • 2014
  • In this paper, we propose a sign language recognition system using SVM and depth camera. Especially, we focus on the Korean sign language. For the sign language system, we suggest two methods, one in hand feature extraction stage and the other in recognition stage. Hand features are consisted of the number of fingers, finger length, radius of palm, and direction of the hand. To extract hand features, we use Distance Transform and make hand skeleton. This method is more accurate than a traditional method which uses contours. To recognize hand posture, we develop the decision tree with the hand features. For more accuracy, we use SVM to determine the threshold value in the decision tree. In the experimental results, we show that the suggested method is more accurate and faster when extracting hand features a recognizing hand postures.

Hand Gesture Recognition Using Shape Similarity Based On Feature Points Of Contour (윤곽선 특징점 기반 형태 유사도를 이용한 손동작 인식)

  • Yi, Hong-Ryoul;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.585-588
    • /
    • 2008
  • This paper proposes hand gesture recognition using shape similarity method. For this, we require two steps which are aquisition of Hand area and similarity evaluation. First step is extracting hand area using YCbCr color spare. Then eliminate noise through filter and analyzing histogram. For doing this, we ran measure similarity of hand gesture by applying TSR after getting contour. Finally, we utilize shape similarity for recognizing of hand gesture.

  • PDF