• 제목/요약/키워드: 손동작 기반

Search Result 126, Processing Time 0.022 seconds

Study on the Hand Gesture Recognition System and Algorithm based on Millimeter Wave Radar (밀리미터파 레이더 기반 손동작 인식 시스템 및 알고리즘에 관한 연구)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • In this paper we proposed system and algorithm to recognize hand gestures based on the millimeter wave that is in 65GHz bandwidth. The proposed system is composed of millimeter wave radar board, analog to data conversion and data capture board and notebook to perform gesture recognition algorithms. As feature vectors in proposed algorithm. we used global and local zernike moment descriptor which are robust to distort by rotation of scaling of 2D data. As Experimental result, performance of the proposed algorithm is evaluated and compared with those of algorithms using single global or local zernike descriptor as feature vectors. In analysis of confusion matrix of algorithms, the proposed algorithm shows the better performance in comparison of precision, accuracy and sensitivity, subsequently total performance index of our method is 95.6% comparing with another two mehods in 88.4% and 84%.

SVM-Based EEG Signal for Hand Gesture Classification (서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구)

  • Hong, Seok-min;Min, Chang-gi;Oh, Ha-Ryoung;Seong, Yeong-Rak;Park, Jun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.508-514
    • /
    • 2018
  • An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movement. The measured data can be classified as a supervised learning model, a support vector machine (SVM). To shorten the learning time of the SVM, a feature extraction and vector dimension reduction by filtering is proposed that minimizes motion-related information loss and compresses EEG information. The classification results showed an average of 72.7% accuracy between the sitting position and the hand movement at the electrodes of the frontal lobe.

A Robust Method for the Recognition of Dynamic Hand Gestures based on DSTW (다양한 환경에 강건한 DSTW 기반의 동적 손동작 인식)

  • Ji, Jae-Young;Jang, Kyung-Hyun;Lee, Jeong-Ho;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.92-103
    • /
    • 2010
  • In this paper, a method for the recognition of dynamic hand gestures in various backgrounds using Dynamic Space Time Warping(DSTW) algorithm is proposed. The existing method using DSTW algorithm compares multiple candidate hand regions detected from every frame of the query sequence with the model sequences in terms of the time. However the existing method can not exactly recognize the models because a false path can be generated from the candidates including not-hand regions such as background, elbow, and so on. In order to solve this problem, in this paper, we use the invariant moments extracted from the candidate regions of hand and compare the similarity of invariant moments among candidate regions. The similarity is utilized as a weight and the corresponding value is applied to the matching cost between the model sequence and the query sequence. Experimental results have shown that the proposed method can recognize the dynamic hand gestures in the various backgrounds. Moreover, the recognition rate has been improved by 13%, compared with the existing method.

A Study on Auto-Generation of Dactylology and Chirology Animation from Text Inputs (텍스트 입력 기반 지화 및 수화 애니메이션 자동 생성에 관한 연구)

  • Lee, Geum-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1151-1154
    • /
    • 2002
  • Unicode 와 지화, 수화의 공통점은 각국 언어의 자모 혹은 단어에 고유한 표현양식이 1:1 로 대응되어 있다는 것이다. Unicode 의 경우 각 자모별 고유의 헥사코드가 지정되어 있고 지화, 수화의 경우 각 자모별, 단어별로 고유한 동작을 표현하는 손동작이 지정되어 있는 것이다. 본 논문에서는 텍스트 입력에 대응하는 지화, 수화 손동작 그림을 연속적으로 렌더링함으로써 애니메이션 효과를 낼 수 있는 알고리즘과 그 구현에 관한 연구를 소개한다.

  • PDF

3-D Hand Motion Recognition Using Data Glove (데이터 글로브를 이용한 3차원 손동작 인식)

  • Kim, Ji-Hwan;Park, Jin-Woo;Thang, Nguyen Duc;Kim, Tae-Seong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.324-329
    • /
    • 2009
  • Hand Motion Modeling and Recognition (HMR) are a fundamental technology in the field of proactive computing for designing a human computer interaction system. In this paper, we present a 3D HMR system including data glove based on 3-axis accelerometer sensor and 3D Hand Modeling. Data glove as a device is capable of transmitting the motion signal to PC through wireless communication. We have implemented a 3D hand model using kinematic chain theory. We finally utilized the rule based algorithm to recognize hand gestures namely, scissor, rock and papers using the 3-D hand model.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Shim Jae-Rok;Park Ho-Sik;Kim Tae-Woo;Ra Sang-Dong;Bae Cheol-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.701-704
    • /
    • 2006
  • 본 논문에서는 카메라-투영 시스템에서 비전에 기반을 둔 손동작 인식을 위한 새로운 알고리즘을 제안하고 있다. 제안된 인식방법은 정적인 손동작 분류를 위하여 푸리에 변환을 사용하였다. 손분할은 개선된 배경 제거 방법을 사용하였다. 대부분의 인식방법들이 같은 피검자에 의해 학습과 실험이 이루어지고 상호작용에 이전에 학습단계가 필요하다. 그러나 학습되지 않은 다양한 상황에 대해서도 상호작용을 위해 동작 인식이 요구된다. 그러므로 본 논문에서는 인식 작업 중에 검출된 불완전한 동작들을 정정하여 적용하였다. 그 결과 사용자와 독립되게 동작을 인식함으로써 새로운 사용자에게 신속하게 온라인 적용이 가능하였다.

  • PDF

A Hand Gesture Recognition Method Using a Hybrid Neural Network (복합형 신경망을 이용한 손동작 인식기법)

  • Lee, Joseph-S.;Cho, Il-Gook;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.59-62
    • /
    • 2006
  • 본 논문에서는 CNN 모델과 WFMM 신경망의 특성을 상호 결합한 손동작 인식기법을 제안한다. 특징 추출 모듈로 사용된 CNN 모델은 움직임 정보에 기초한 특징지도상에서 특징의 위치 이동이나 왜곡에 의한 성능 저하를 개선시키는 계층간 연결구조를 갖는다. WFMM 신경망에 기반한 패턴 분류 모듈은 간결하고 강력한 학습기능을 지원하며, 학습된 신경망은 분류 능력을 그대로 유지한 상태에서 추가 학습이 가능하다는 장점을 지닌다. 또한 이 패턴 분류 모델은 학습패턴으로부터 특징의 상대적 중요도를 평가하는, 이른바 특징 선정 기법을 지원한다. 본 논문에서는 제안된 모델의 동작 특성과 학습 알고리즘을 소개하고, 손동작 인식문제에 적용한 실험을 통하여 이론의 타당성을 평가한다.

  • PDF

Presentation Control System using Vision Based Hand-Gesture Recognition (Vision 기반 손동작 인식을 활용한 프레젠테이션 제어 시스템)

  • Lim, Kyoung-Jin;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.281-284
    • /
    • 2010
  • In this paper, we present Hand-gesture recognition for actual computing into color images from camera. Color images are binarization and labeling by using the YCbCr Color model. Respectively label area seeks the center point of the hand from to search Maximum Inscribed Circle which applies Voronoi-Diagram. This time, searched maximum circle and will analyze the elliptic ingredient which is contiguous so a hand territory will be able to extract. we present the presentation contral system using elliptic element and Maximum Inscribed Circle. This algorithm is to recognize the various environmental problems in the hand gesture recognition in the background objects with similar colors has the advantage that can be effectively eliminated.

  • PDF

Design and Implementation of Personal Communicator based on Embedded Single Board Computer for Controlling of Remote Devices (원격 장치 제어를 위한 임베디드 기술 기반의 개인용 커뮤니케이터 설계 및 구현)

  • Jang, Seong-Sik;Byun, Tae-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.99-109
    • /
    • 2011
  • This paper presents implementation details of home appliance control system using personal communicator based on LN2440 single board computer, which recognizes hand-gesture of user, controls remote moving device such as mobile home server, robot etc. through delivery of proper control commands. Also, this paper includes details of design and implementation of home gateway and mobile home server. The implemented prototype can be utilized to develop various remote control system including a remote exploration robot, intelligent wheelchair based on general purpose embedded system.

Vision-based hand Gesture Detection and Tracking System (비전 기반의 손동작 검출 및 추적 시스템)

  • Park Ho-Sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1175-1180
    • /
    • 2005
  • We present a vision-based hand gesture detection and tracking system. Most conventional hand gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Therefore, we propose a statistical method to recognize and detect hand regions in images using geometrical structures. Also, Our hand tracking system employs multiple cameras to reduce occlusion problems and non-synchronous multiple observations enhance system scalability. In this experiment, the proposed method has recognition rate of $99.28\%$ that shows more improved $3.91\%$ than the conventional appearance method.