• Title/Summary/Keyword: 속도보정

Search Result 659, Processing Time 0.027 seconds

Aided Navigation Algorithm for Land Navigation System Using VMS with Indirect Drive Condition (직진성이 보장되지 않는 조건에서 지상항법시스템의 속도계를 이용한 보정항법 알고리즘)

  • Kim, Hyungsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.314-320
    • /
    • 2016
  • Inertial navigation system (INS) has used aided systems and sensors to compensate navigation error. Global navigation satellite system (GNSS), velocity measurement sensor (VMS), and radar are commonly used to aid INS. Land navigation system (LNS) also mainly uses VMS when GNSS cannot be used such as at tunnel or on jammed scenario. A straight drive is required when VMS-aided navigation is used, because there is only speed of straight direction whereas no crossways and vertical directions. In local environment, even an expressway has lack of straight drive which is constraint of VMS-aided navigation algorithm. This paper proposes an enhanced VMS-aided navigation algorithm for LNS with indirect drive by restricting filter update condition. Also, there is a result of vehicle test to prove performance of the proposed algorithm.

Accuracy of the Loran-C Fix in Cheju Areas (제주지역에서의 Loran-C 위치의 정도)

  • Kim, Gwang-Hong;Sim, Hyeong-Il;Jang, Chung-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1985
  • This paper was conducted for the purpose of evaluating the accuracy of the observed time difference in Loran-C when the ground wave propagated on the surface included both land sea. The time difference of X and Y station in North East Pacific Chain GRI 5970 was measured at 25 points in Cheju areas. The results obtained are as follows: (1) The errors of time difference for M-X pair are increased when the Loran-C wave propagates above 500m heights of Hanla mountain on propagation path between the observed point and master or X, Y slave station. (2) The errors of time difference for M-X pair are able to decrease by way of correction for the propagation velocity and the geodetic datum, but errors of the time difference for M-Y pair very irregularly because irregular terrain include in propagation path from X station and propagation path from Y station is twice longer than X station. (3) It is confirmed that accuracy of Loran-C fix can elevate by the way of all correction for a geodetic datum transformation, the propagation velocity with refractive index of radio wave and the propagation velocity over land.

  • PDF

Weighted Kirchhoff Prestack Depth Migration using Smooth Background Model (Smooth Background Model(SBM)을 이용한 가중 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin;Shin, Chang-Su
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.84-88
    • /
    • 2001
  • For the elastic migation, the velocity errors between the initial velocity model and true velocity model seriously affect the migrated images. The assumption of an initial velocity model, thus, is one of the critical factor for the successful migration. In case of applying the layered earth model as an initial velocity model, the layer boundary having large velocity contrast can not be defined well with conventional traveltime calculation algolithms and we have the difficulties for expressing the characteristics of the real subsurface. Smooth Background Model (SBM) we have applied as an initial velocity model in our study is characterized to be linearly varying the velocity with the depth, which can express the velocity variation in the subsurface properly. Thus it can properly be applied to traveltime calculation algolithms such as Vidale's method. In this study, Kirchhoff operator for prestack migration was used and the absolute amplitude obtained by modeling was applied as a weighted value to consider the true amplitude for initial model. Initial velocity model for migration was determined by using stacking velocity and we applied this model to real data.

  • PDF

Correcting the Sound Velocity of the Sediments in the Southwestern Part of the East Sea, Korea (동해 남서해역 퇴적물의 음파전달속도 보정)

  • Kim, Sora;Kim, Daechoul;Lee, Gwang-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.408-419
    • /
    • 2016
  • To investigate the in-situ sound velocity of sediment in the southwestern part of the East Sea, the laboratory sound velocity was measured using the pulse transmission technique. The sediment sound velocity measured in laboratory was corrected to in-situ sound velocity based on the seafloor temperature, seawater sound velocity, Kim et al. (2004) model, and Hamilton (1980) model. The distribution of the corrected in-situ sound velocity applying Kim et al. (2004) and Hamilton (1980) models reflects the characteristics of sediments of the study area and shows a similar distribution pattern. The correction for in-situ sound velocity was mostly influenced by seafloor temperature. Then, correction of sound velocity using seafloor sediment temperature data should be accomplished for conversion of laboratory data to in-situ sound velocity.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

2D Prestack Generalized-screen Migration (2차원 중합전 일반화된-막 구조보정)

  • Song, Ho-Cheol;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.315-322
    • /
    • 2010
  • The phase-screen and the split-step Fourier migrations, which are implemented in both the frequency-wavenumber and frequency-space domains by using one-way scalar wave equation, allow imaging in laterally heterogeneous media with less computing time and efficiency. The generalized-screen migration employs the series expansion of the exponential, unlike the phase-screen and the split-step Fourier migrations which assume the vertical propagation in frequency-wavenumber domain. In addition, since the generalized-screen migration generalizes the series expansion of the vertical slowness, it can utilize higher-order terms of that series expansion. As a result, the generalized-screen migration has higher accuracy in computing the propagation with wide angles than the phase-screen and split-step Fourier migrations for media with large and rapid lateral velocity variations. In this study, we developed a 2D prestack generalized-screen migration module for imaging a complex subsurface efficiently, which includes various dips and large lateral variations. We compared the generalized-screen propagator with the phase-screen propagator for a constant perturbation model and the SEG/EAGE salt dome model. The generalized-screen propagator was more accurate than the phase-screen propagator in computing the propagation with wide angles. Furthermore, the more the higher-order terms were added for the generalized-screen propagator, the more the accuracy was increased. Finally, we compared the results of the generalizedscreen migration with those of the phase-screen migration for a model which included various dips and large lateral velocity variations and the synthetic data of the SEG/EAGE salt dome model. In the generalized-screen migration section, reflectors were positioned more accurately than in the phase-screen migration section.

A Study on the Modification Value for Estimation of Traveling Speed During Rainfall in Interrupted Traffic Flow (단속교통류에서 강우시 평균통행속도 산정을 위한 보정계수에 관한 연구)

  • Mo, Moo Ki;Lee, Seung Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • Generally, V/C ratio in uninterrupted traffic flow and average travel speed in interrupted traffic flow are utilized as measure of effect for assessing operational situation of roads. The set of road conditions and traffic conditions are considered to be major variables for assessing operational situation in the traffic flow. However, weather conditions such as rainfall also affect the operational situation of roads. The studies reflected by the rainy situation are conducted in the uninterrupted flow, but the related studies are insufficient in the interrupted flow. In this study, the modification factors during rainfall in the interrupted flow were suggested, and the factors could be used when calculating the average travel speed during rainfall in the interrupted flow. By utilizing the data that were investigated in the same road and traffic conditions and the different weather conditions (rainy day or clear day), the modification factors were founded on regression analysis of the travel speed during rainfall as a dependent variable. Modification factors was suggested in dividing peak time, non-peak time, and whole period. Based on this study, the modification factors can be used to complementing the average travel speed model for assessing the operational situation of urban streets during rainfall.

Analysis of Geometric Calibration Accuracy using the Results from IR Channel Nominal Radiometric Calibration (적외채널 기본 복사보정 결과를 이용한 기하보정 처리의 정확도 분석)

  • Seo, Seok-Bae;Kwon, Eun-Joo;Jin, Kyoung-Wook
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The nominal radiometric calibration equation and additional five algorithms are applied in the infrared channel radiometric calibration for the COMS (Communication, Ocean, Meteorological Satellite) MI (Meteorological Imager). The processing end time of the radiometric calibration is directly related with the start time of geometric calibration processing since the geometric calibration processing is followed by that of the radiometric calibration. This paper describes comparison and analysis results for geometric calibration processing using two types of the radiometric calibration results, outputs from only the nominal radiometric calibration equation and outputs from the complete one (the nominal radiometric calibration equation with additional five algorithms), to propose a method with the earlier start time of the geometric calibration processing. Experimental results show that both of radiometric calibration results, from the nominal radiometric calibration equation with a fast processing speed and from the complete one with accurate radiometric values, can be used in the geometric calibration as the appropriate inputs because those processing results satisfied the requirements of geometric calibration processing accuracy. Thus the radiometric calibration results from the nominal radiometric calibration equation can be used to improve geometric calibration processing time.

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

Automatic Global Registration for Terrestrial Laser Scanner Data (지상레이저스캐너 데이터의 자동 글로벌 보정)

  • Kim, Chang-Jae;Eo, Yang-Dam;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.281-287
    • /
    • 2010
  • This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.