• Title/Summary/Keyword: 소형 풍동

Search Result 37, Processing Time 0.026 seconds

A Study on the Development and Performance Test of Supersonic Wind Tunnel for Education (교육용 초음속 풍동 개발 및 성능검증에 관한 연구)

  • Lee, Jin-Ho;Huh, Choul-Jun;Bae, Ki-Joon;Bae, Yung-Woo;Byun, Yung-Hwan;Lee, Jae-Woo;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.129-137
    • /
    • 2004
  • A small size - low priced supersonic wind tunnel of which test section size is 30mm by 35.6mm and run time is 20sec is developed. This educational supersonic wind tunnel is an intermittent blowdown type with an exchangeable nozzle block. In this study, the proper sized and low priced commercial parts are used to reduce the total cost of supersonic wind tunnel. A nozzle design and small supersonic wind tunnel design process has been established, and it is confirmed that a given supersonic flow field has been obtained and proved by experiment.

Analysis on Heat Loss of Single-span Greenhouse Using Small-scaled Wind Tunnel (소형풍동을 이용한 단동 비닐온실의 열손실 분석)

  • Kim, Young Hwa;Kim, Hyung kow;Lee, Tae suk;Oh, Sung sik;Ryou, Young sun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • The objective of this study is to analyze the heat transfer loss of covering materials in a single-span plastic greenhouse under the steady-state wind environment. To achieve this objective, the following were conducted: (1) design of a small-scaled wind tunnel (SCWT) to analyze heat losses of the greenhouse and its performance; (2) determination of the overall heat transfer coefficient (OHTC) for the covering materials using a small-scaled greenhouse model. The SCWT consists of the blowing, dispersion, steady flow, reduction and testing areas. Each part of the SCWT was customized and designed to maintain air flow at steady state and to minimize the variances in the SCWT test. In this study, the OHTCs of the covering materials were calculated by separating each with the roof, side wall, front and back of the small-scaled greenhouse model. The results of this study show that the OHTC of the roof increases as wind speed increases but the zones in which the increase rate of the OHTC decreased, were distinguished by wind tunnel wing speed of 2 ms-1. For the side wall, the increase rate of the OHTC was particularly higher in the 0-1 ms-1 zone.

An Experimental Study on High Angle of Attack Static Stability Analysis For the Aerodynamic Design of Canard Type High Maneuver Aircraft (카나드 형상 고시동 항공기 공력설계를 우한 높은 받음각 정적 안정성 분석 실험 연구)

  • Chung, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2007
  • During the conceptual design phase of a canard type high maneuverable aircraft, the low speed small scale wind tunnel test was conducted to investigate the high angle-of-attack static stability of the aircraft. In this study, 1/50th scale generic canard-body-wing model was used for the small scale wind tunnel test. For the analysis of static stability including high angle-of-attack nonlinear characteristics, the vertical tail effects were studied due to canard deflections. In addition, the nose chine effects were studied at high angle-of-attack. Based on the results obtained from the experimental study, the configuration change effects for canard type aircraft on high angle-of-attack static stability have been able to analyze.

Study on Model Support Interference of the Scaled NASA Common Research Model in Small Low Speed Wind Tunnel (소형 저속 풍동에서 NASA 표준 연구 모형의 모형지지부 효과 연구)

  • Kim, Namgyun;Cho, Cheolyoung;Ko, Sungho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.56-64
    • /
    • 2020
  • A wind tunnel test of 29.7% scaled model of NASA Common Research Model was performed in small low speed wind tunnel. The wind tunnel model was fabricated in Aluminium in consultation with NASA Langley Research Center and AIAA Drag Prediction Workshop committee members. The static aerodynamic forces and moments were measured at a relatively low Reynolds number of 0.3 × 106 due to tunnel capability limitations. Pitching moment of three types of model support(Fin sting, Blade sting and Belly sting) were compared. The pitching moment for corrected Belly sting and Fin sting were similar. The result of pitching moment for Blade sting was very small.

Development and Operating Test of the Supersonic Wind Tunnel with $25cm{\times}20cm$ Test Section ($25cm{\times}20cm$ 초음속 풍동 개발 및 시험 평가)

  • Kim, Sei-Hwan;Park, Ji-Hyun;Lee, Seung-Bok;Jeung, In-Seuck;Lee, Hyung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.777-780
    • /
    • 2011
  • The supersonic wind tunnel is a common facility to studies the aerodynamic phenomenon around the high speed vehicle or weapon system whose operating speed is greater than sonic speed. In this study, a design procedure and selecting the components of a new supersonic wind tunnel whose nozzle exit is $125mm{\times}100mm$ is considered. An operating test of this wind tunnel is being conducted to compare the result with the design values, mach number, etc.

  • PDF

Experimental Study on the Aerodynamic Characteristics of the Ducted Fan for a Small UAV (소형 무인기 추진용 덕티드 팬의 공력특성에 관한 실험적 연구)

  • Kim, Jae-Kyeong;Choi, Hyun-Min;Cha, Bong-Jun;Lee, Sang-Hyo;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.251-256
    • /
    • 2008
  • The experimental analysis on a ducted fan for the propulsion system of a small UAV were performed. To investigate the aerodynamic characteristics of the ducted fan, flow fields at inlet and outlet were measured using a hot-wire anemometry. Thrusts were measured with the six-component balance with due regard to the cross wind. To reproduce the cross wind effect, the ducted fan was aligned to $90^{\circ}$ rotated direction against flow direction in the wind tunnel. In this paper, the variation of the flow fields and thrust according to the cross wind were analyzed.

  • PDF

Development and Preliminary Performance test of Multi-purpose Small Scale Thrust Measurement System (다목적 소형 추력측정기의 제작 및 기초 검증시험)

  • 김형민;김정용;허환일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.73-76
    • /
    • 2002
  • 본 연구에서는 기존의 추력측정 방법보다 간단한 추력측정 방법으로서 피토 압력을 이용한 방법을 제안하였고, 이의 검증을 위해 소형 추력측정기를 제작하였다. 추력측정기를 이용하여 모델로켓 모터 및 초음속 풍동의 추력측정을 통하여 그 가능성을 확인하였고 본 연구의 목표인 피토압력과 추력측정기를 이용한 측정 추력의 비교연구가 계획되어 있다.

  • PDF

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.