• 제목/요약/키워드: 소프트웨어 학습모델

검색결과 619건 처리시간 0.03초

소프트웨어개발방법론에 기반한 교수-학습프로세스모델링 (Software Development Methodology-based Instruction Process Modeling)

  • 박충식;이세나;김재홍;박용환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.822-826
    • /
    • 2009
  • 학습 프로세스는 학습참여자인 학습자들과 교수자의 상호적인 활동에 의하여 교수-학습이 이루어지는 과정이라고 할 수 있다. 이러한 과정에서 일련의 학습자료들이 제공되고 만들어진다. 교수-학습이론에서 여러 가지 모델이 제안되어 이용되고 있지만 각 학습참여자의 역할과 학습자료간의 관계가 명시적으로 정의되어 운영되지 못하는 점이 있다. 한편 서비스제공이나 소프트웨어개발과 같은 추상적인 결과물을 생산해야하는 경영학이나 소프트웨어공학에서는 프로세스(과정)의 관리만이 그 결과물의 질을 담보할 수 있다고 생각한다. 결과물의 질관리를 위한 프로세스의 관리는 프로세스의 역할별 활동에 의한 투입/산출물, 프로세스들의 관계를 명시하고, 그에 따른 측정가능한 지표를 개발-분석함으로써 이루어진다. 본 논문에서는 소프트웨어 개발 방법론에 기반하여 구성주의적 교수-학습 프로세스를 정의함으로써 교수활동에 구성주의적 교수-학습이론을 용이하게 적용할 수 있는 지침을 제공하고, 향후 프로세스를 기반으로 하는 교육 서비스사이언스의 기본적 구성요소를 제공하고자 한다.

  • PDF

코딩 교육 성취도 향상을 위한 드론 기반 체감형 SW 교육 모델 설계 (Design of Drone-based Experiential SW Education Model for Improving Coding Education Achievement)

  • 이현서;김현지;이주현;백윤지;김중완;하옥균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.537-538
    • /
    • 2021
  • 코딩 교육에 대한 중요성이 높아짐에 따라 국가 주도적 교육이 강화되고 있다. 컴퓨터 프로그래밍이 낯선 교육생을 위해 교육 커리큘럼에 블록 코딩을 도입하고 있으나 낮은 흥미도로 인해 여전히 교육 성취도가 낮게 나타난다. 본 논문에서는 컴퓨터 프로그래밍에 대한 관심을 유발하고 학습을 보조하는 드론 기반의 체감형 교육 프로그램모델을 제시한다. 제시하는 교육 모델은 사용자가 코딩한 블록 코드를 파이썬 코드로 변환하여 보여주고, 블록 코드로 첨부된 드론의 동작을 제어하도록 코딩할 수 있다. 사용자의 심화학습을 위해 추가적으로 제공하는 웨어러블 장갑 컨트롤러를 통해 드론과 연관하여 동작 제어가 가능하게 하여 흥미 유발과 더불어 학습 효과 향상을 기대할 수 있다.

  • PDF

효율적인 학습 모델을 지원하는 웹 페이지 학습 기억 플랫폼 구현 (The Implementation of Web Page Learning Memory Platform to support efficient Learning Model)

  • 김성준;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.291-294
    • /
    • 2021
  • 본 논문에서는 영어 교육에 대한 사회적인 인식은 중요해지면서 다양한 방식의 영어공부와 학습모델들을 분석하고 오랫동안 가억이 가능한 학습시스템을 검토하였다. 그러나 영어의 기초가 되는 영어 단어의 공부법이 논리적인 근거 없이 강사의 인지도와 명성에 현혹되어 강사가 추천해 주는 공부 방법에 따라 잘못된 학습하는 경우가 대부분이다. 또한 사람마다 자기에게 맞는 학습법은 분명 존재할 것이다. 하지만 그 방법 외에 효과적인 다른 방법 또한 찾아 볼 수 있다. 헤르만 에빙하우스는 사람의 망각 연구한 결과 망각의 주기를 수치로 나타내었고, 라이트너는 플래시 카드를 박스에 넣어 복습을 반복하는 아날로그 장치를 만들어 복습의 효과를 연구하였다. 본 논문에서는 헤르만 에빙하우스의 망각 곡선 이론을 통해 효율적인 영어 단어 학습방법을 논리적으로 증명하고, 웹사이트를 사용한 라이트너 박스와 망각 곡선의 이론을 적용하여 망각의 주기에 따른 복습의 효과를 적용하여 결과적으로 사용자에게 접근성이 좋은 학습형 플랫폼을 제공하여 시간 대비 학습률이 좋은 시스템을 개발하고자 하였다.

  • PDF

사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구 (Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models)

  • 신예은;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Edge Computing 환경을 위한 기계학습 모델 유형 조사 (Type of Machine Learning Model for Edge Computing Environment: A Survey)

  • 김민우;이태호;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.111-112
    • /
    • 2019
  • Edge computing 환경에서는 노드끼리 직접 또는 간접적으로 전송되는 많은 수의 데이터가 Computing 노드에 의해 수집된다. Computing 노드에 실시간 적으로 전송되어지는 데이터의 저장 및 처리를 위해 기계학습(Machine learning) 기법이 사용된다. 기존의 기계학습 모델의 학습방법의 경우 Edge computing 노드의 지능화에 다소 맞지 않는 방법이며 노드들 간의 협업 시스템을 기계학습 모델에 구축하는 것 또한 중요개선사항 중 하나이다. 본 논문에서는 Edge computing 환경에서 적용 가능한 기계학습 모델을 조사하였다. 본 조사를 통하여 향후 edge computing 환경에서의 제약사항에 대해 더 구체적이며 다양한 연구방향을 제시할 수 있으며 효율적인 모델 적용을 목표로 한다.

  • PDF

근골격 모델과 참조 모션을 이용한 이족보행 강화학습 (Reinforcement Learning of Bipedal Walking with Musculoskeletal Models and Reference Motions)

  • 전지웅;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2023
  • 본 논문은 강화학습을 통해 이족보행에 대한 모션 캡처를 통해 참조 모션의 데이터들을 기반으로 근골격 캐릭터의 시뮬레이션을 적은 비용으로 높은 품질의 결과를 얻을 방법을 소개한다. 우리는 참조 모션 데이터를 캐릭터 모델이 수행할 수 있게끔 재설정을 한 후, 강화학습을 통해 해당 모션을 학습하도록 훈련시킨다. 참조 모션 모방과 근육에 대한 최소한의 메타볼릭 에너지를 결합하여 원하는 방향으로 근골격 모델이 이족보행을 수행하게끔 학습한다. 이러한 방법으로 근골격 모델은 기존의 수동으로 설계된 컨트롤러보다 적은 비용으로 학습할 수 있으며 높은 품질의 이족보행을 수행할 수 있게 된다.

자율주행 대응 기계학습 데이터를 관리하고 분석하는 소프트웨어의 개발 (Development of Data Management and Analysis Software for Autonomous Vehicle Driving Environment)

  • 박종빈;이한덕;김경원;정종진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.87-88
    • /
    • 2019
  • 최근 기계학습 기술의 급속한 발전에 힘입어 자율주행을 위한 객체 인식 및 처리 기술 역시 비약적으로 발전하고 있다. 그러나 이러한 기계학습의 성능은 모델의 구조와 학습용 데이터의 품질에 영향을 받는다. 특히 주행환경을 잘 표현하는 학습데이터가 중요한데 전혀 새로운 도로, 주행환경, 장애물, 정적 혹은 동적 객체 등을 마주하면 정확도와 안정성에서 부정적인 영향을 받을 수 있는 것이다. 해외의 주행 데이터들에 크게 의존하고 있는 우리나라의 현실에 비춰 볼 때 국내 환경에 맞는 학습데이터를 쉽고 효율적으로 확보/관리/분석할 수 있게 하는 환경의 구축이 시급하다. 따라서 본 논문에서는 자율주행을 위한 기계학습 데이터를 효과적으로 관리하고 분석하기 위한 소프트웨어를 설계하고 개발하였다. 구체적으로는 수집된 영상들을 관리하는 기능, 영상에 존재하는 노이즈 제거 및 화질 개선 처리 기능, 학습 및 검증을 위한 메타 정보 태깅 기능, 태깅 정보의 통계적 분석 기능들을 포함한다. 개발한 소프트웨어는 우리나라에서 자체 촬영한 자율주행 학습 영상들에 대해 딥러닝 모델들을 학습하고 검증하는데 활용할 예정이다.

  • PDF

음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델 (Korean sentence spacing correction model using syllable and morpheme information)

  • 최정명;오병두;허탁성;정영석;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

전이학습 기반 황반변성 진단모델의 개발 (Development of A Macular Degeneration Predictive Model Based on Transfer Learning)

  • 김경민;오세종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.43-45
    • /
    • 2022
  • 본 논문은 황반변성 진단 모델 개발을 위해 안저 사진을 이용한 MobileNet2 전이학습 모델 개발과 안정적인 모델 성능을 위한 이미지 증강 방법 및 모델 성능 향상을 위한 파라미터 조정 방법을 제안한다. 보유하고 있는 이미지의 수가 매우 적다고 하더라도 적절한 전이학습 모델을 사용하고 이미지 증강 시 증강 방법과 증강한 이미지와 정상 이미지와의 비율을 적절히 고려할 경우 충분히 안정적인 결과를 얻어낼 수 있다. 또한 파라미터 조정을 통해서 성능 향상을 도모할 수 있다

명령어 튜닝이 대규모 언어 모델의 문장 생성에미치는 영향력 분석 (A Study on Instruction Tuning for Large-scale Language Models)

  • 나요한;채동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.684-686
    • /
    • 2023
  • 최근 대규모 언어모델 (large language models) 을 활용하여 다양한 자연어처리 문제를 추가학습 없이 풀어내기 위한 zero-shot 학습에 대한 연구가 활발히 수행되고 있다. 특히 프롬프트 튜닝(prompt tuning)을 활용하여 적은 학습만으로도 효과적으로 다양한 태스크에 적응하도록 돕는 방법이 최근 대규모 언어모델의 성능을 향상시키고 있다. 본 논문은 명령어 튜닝 (instruction tuning) 이 언어모델에 끼치는 영향을 분석하였다. 명령어 튜닝된 모델이 기존 언어모델과 비교하여 변화된 문장 생성 특징, 생성된 문장의 품질 등에 대한 분석을 수행하고 결과를 제시한다.