• Title/Summary/Keyword: 소셜 빅데이터 분석

Search Result 330, Processing Time 0.033 seconds

MapReduce-Based Partitioner Big Data Analysis Scheme for Processing Rate of Log Analysis (로그 분석 처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법)

  • Lee, Hyeopgeon;Kim, Young-Woon;Park, Jiyong;Lee, Jin-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.593-600
    • /
    • 2018
  • Owing to the advancement of Internet and smart devices, access to various media such as social media became easy; thus, a large amount of big data is being produced. Particularly, the companies that provide various Internet services are analyzing the big data by using the MapReduce-based big data analysis techniques to investigate the customer preferences and patterns and strengthen the security. However, with MapReduce, when the big data is analyzed by defining the number of reducer objects generated in the reduce stage as one, the processing rate of big data analysis decreases. Therefore, in this paper, a MapReduce-based split big data analysis method is proposed to improve the log analysis processing rate. The proposed method separates the reducer partitioning stage and the analysis result combining stage and improves the big data processing rate by decreasing the bottleneck phenomenon by generating the number of reducer objects dynamically.

Analysis of Public Perception and Policy Implications of Foreign Workers through Social Big Data analysis (소셜 빅데이터분석을 통한 외국인근로자에 관한 국민 인식 분석과 정책적 함의)

  • Ha, Jae-Been;Lee, Do-Eun
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This paper aimed to look at the awareness of foreign workers in social platforms by using text mining, one of the big data techniques and draw suggestions for foreign workers. To achieve this purpose, data collection was conducted with search keyword 'Foreign Worker' from Jan. 1, to Dec. 31, 2020, and frequency analysis, TF-IDF analysis, and degree centrality analysis and 100 parent keywords were drawn for comparison. Furthermore, Ucinet6.0 and Netdraw were used to analyze semantic networks, and through CONCOR analysis, data were clustered into the following eight groups: foreigner policy issue, regional community issue, business owner's perspective issue, employment issue, working environment issue, legal issue, immigration issue, and human rights issue. Based on such analyzed results, it identified national awareness of foreign workers and main issues and provided the basic data on policy proposals for foreign workers and related researches.

A Study on Social Perception of Young Children with Disabilities through Social Media Big Data Analysis (소셜 미디어 빅데이터 분석을 통한 장애 유아에 대한 사회적 인식 연구)

  • Kim, Kyoung-Min
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2022
  • The purpose of this study is to identify the social perception characteristics of young children with disabilities over the past decade. For this purpose, Textom, an Internet-based big data analysis system was used to collect data related to young children with disabilities posted on social media. 50 keywords were selected in the order of high frequency through the data cleaning process. For semantic network analysis, centrality analysis and CONCOR analysis were performed with UCINET6, and the analyzed data were visualized using NetDraw. As a result, the keywords such as 'education, needs, parents, and inclusion' ranked high in frequency, degree, and eigenvector centrality. In addition, the keywords of 'parent, teacher, problem, program, and counseling' ranked high in betweenness centrality. In CONCOR analysis, four clusters were formed centered on the keywords of 'disabilities, young child, diagnosis, and programs'. Based on these research results, the topics on social perception of young children with disabilities were investigated, and implications for each topic were discussed.

A Study on the Analysis of Influx Factors in Urban Parks Using Data Mining - Focus on Yangjae Citizens' Forest Park - (데이터 마이닝을 활용한 도시공원 유입 요인 분석 연구 - 양재시민의 숲 공원을 대상으로 -)

  • Park Sang Hun
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.3
    • /
    • pp.35-48
    • /
    • 2023
  • This study analyzed the inflow factors of Yangjae Citizen's Forest Park using social big data generated online. To this end, the applicability of the emotional information analysis method is to be confirmed as a method of analyzing the perception of the city park and confirming the difference in the characteristics and use of the park. The analysis is based on big data, and as the core of the study is keyword network analysis, the methodology of the 'emotional information analysis method' patented by the author was applied. As a result of the analysis, among the influx factors of Yangjae Citizens' Forest recognized by citizens, the most positive emotional factor was derived as a factor related to 'park contents', and the negative emotional factor was derived as a factor related to 'park management'. These research results suggest that more in-depth program development and operation are needed to discover 'park contents' when implementing urban park revitalization support projects in the future

The Sensitivity Analysis for Customer Feedback on Social Media (소셜 미디어 상 고객피드백을 위한 감성분석)

  • Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.780-786
    • /
    • 2015
  • Social media, such as Social Network Service include a lot of spontaneous opinions from customers, so recent companies collect and analyze information about customer feedback by using the system that analyzes Big Data on social media in order to efficiently operate businesses. However, it is difficult to analyze data collected from online sites accurately with existing morpheme analyzer because those data have spacing errors and spelling errors. In addition, many online sentences are short and do not include enough meanings which will be selected, so established meaning selection methods, such as mutual information, chi-square statistic are not able to practice Emotional Classification. In order to solve such problems, this paper suggests a module that can revise the meanings by using initial consonants/vowels and phase pattern dictionary and meaning selection method that uses priority of word class in a sentence. On the basis of word class extracted by morpheme analyzer, these new mechanisms would separate and analyze predicate and substantive, establish properties Database which is subordinate to relevant word class, and extract positive/negative emotions by using accumulated properties Database.

Trends in Social Media Participation and Change in ssues with Meta Analysis Using Network Analysis and Clustering Technique (소셜 미디어 참여에 관한 연구 동향과 쟁점의 변화: 네트워크 분석과 클러스터링 기법을 활용한 메타 분석을 중심으로)

  • Shin, Hyun-Bo;Seon, Hyung-Ju;Lee, Zoon-Ky
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.99-118
    • /
    • 2019
  • This study used network analysis and clustering techniques to analyze studies on social media participation. As a result of the main path analysis, 37 major studies were extracted and divided into two networks: community-related networks and new media-related. Network analysis and clustering result in four clusters. This study has the academic significance of using academic data to grasp research trends at a macro level and using network analysis and machine learning as a methodology.

  • PDF

A Study of Social Media User Response about Firms' Crisis Response Strategies (기업의 위기대응전략에 대한 소셜 미디어 이용자의 반응 연구)

  • Kim, Bora;Kim, Woohee;Jung, Yoonhyuk
    • The Journal of Bigdata
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 2017
  • The importance of online communication is getting increased by the rapid growth of smartphone supply and Social Network Service (SNS) use. Catching up with the trend, firms are actively use SNS to improve brand image, promote products, and communicate with customer. On the one hand, SNS is the channel for firms' marketing activities, but on the other, it is also the channel where the events related to the firms propagate in real time. Firms are led to unexpected state of crisis, when events are quickly spread out on SNS. Then firms are assessed their image by the way they deal with the state of crisis. This paper proposes to figure out user response on SNS according to each crisis response strategies by analyzing event-related twitter data when crisis situations of firms arise. We classify crisis response strategies into response attitude, defensive and accommodative response, and response speed, fast and slow response. This paper suggests optimal crisis response strategy to firms regarding state of crisis propagated on SNS.

  • PDF

A Study on the Application Modeling of SNS Big-data for a Micro-Targeting using K-Means Clustering (K-평균 군집을 이용한 마이크로타겟팅을 위한 SNS 빅데이터 활용 모델링에 관한 연구)

  • Song, Jeo;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.321-324
    • /
    • 2015
  • 본 논문에서는 SNS에 존재하는 특정 제품과 브랜드 또는 기업에 대한 평가, 의견, 느낌, 사용 후기 등의 소비자 생각을 수집하여 기업에서 향후 신제품 개발이나 시장 진출 및 확대 등의 경영활동에 활용할 수 있도록 SNS 빅데이터를 문석하고, 이를 활용하여 보다 소집단화 되고 개인화 되어가는 Micro-Trend 중심의 마케팅 활동을 할 수 있는 Micro-Targeting 관련 분석 정보를 제공 모델링하는 것을 제안한다. 본 연구에서는 SNS 데이터의 수집, 저장, 분석에 대한 내용을 다루고 있으며, 특히 마이크로타겟팅을 위한 정보를 머하웃(Mahout)의 유클리드 거리 기반의 유사도와 K-평균 군집 알고리즘을 활용하여 구현하고자 하였다.

  • PDF

Development of a Prediction Model for Advertising Effects of Celebrity Models using Big data Analysis (빅데이터 분석을 통한 유명인 모델의 광고효과 예측 모형 개발)

  • Kim, Yuna;Han, Sangpil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.99-106
    • /
    • 2020
  • The purpose of this study is to find out whether image similarity between celebrities and brands on social network service be a determinant to predict advertising effectiveness. To this end, an advertising effect prediction model for celebrity endorsed advertising was created and its validity was verified through a machine learning method which is a big data analysis technique. Firstly, the celebrity-brand image similarity, which was used as an independent variable, was quantified by the association network theory with social big data, and secondly a multiple regression model which used data representing advertising effects as a dependent variable was repeatedly conducted to generate an advertising effect prediction model. The accuracy of the prediction model was decided by comparing the prediction results with the survey outcomes. As for a result, it was proved that the validity of the predictive modeling of advertising effects was secured since the classification accuracy of 75%, which is a criterion for judging validity, was shown. This study suggested a new methodological alternative and direction for big data-based modeling research through celebrity-brand image similarity structure based on social network theory, and effect prediction modeling by machine learning.

A Co-Occuring HashTag Analysis Technique In SNS EnvironMents (SNS 환경에서 동시출현 해시태그 분석 기법)

  • Kim, Se-Jin;Lee, Sang-Don
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.223-224
    • /
    • 2014
  • 최근 빅데이터 시대에 다가와서 소셜 네트워크 서비스(Social Network Service)가 중요한 정보 공유의 수단으로 발전함에 따라 그에 따른 예측분석, 동향분석, 이슈탐지 등이 증가하고 있으며, 콘텐츠 분야에서 빅데이터 기법 사례가 증가하는 추세이다. 모바일기기 보급이 빠르게 확산되면서 SNS 활성화와 함께 많은 양의 데이터가 증가하고 있으며, 인스타그램과 같은 해시태그 사용 가능 SNS 서비스에서 해시태그의 동시출현은 해시태그만의 연관성이 있음을 의미한다. 본 논문에서는 대상 SNS의 동시출현 해시태그를 분석하기 위해 발생되는 데이터를 가지고 현재 트렌드에 맞게 분석하여 정보를 제공하는 방법을 제시한다.

  • PDF