• Title/Summary/Keyword: 소셜 마케팅

Search Result 233, Processing Time 0.027 seconds

A Study on Ways to Increase the Effectiveness of Virtual Models as Influencers for the MZ Generation: Focusing on Medical Institutions (MZ세대에게 가상모델 인플루언서의 효과를 높일 수 있는 방안 연구:의료기관을 중심으로)

  • Heejung Lee;Myounga An
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.26-47
    • /
    • 2023
  • In the age of digital media transformation, the rapid rise of social media has changed the paradigm of traditional marketing techniques by leveraging the influence of influencers. However, the influence of influencers cannot be freed from ethical issues that arise as individuals, so virtual influencers are emerging as a countermeasure. This study is a study on how to increase the influencer effect of virtual models with a focus on the MZ generation in medical service. This study investigated whether respondents in their 40s or younger were aware of 'Rosy', a virtual influencer, and then conducted a survey on those who recognized 'Rosy'. As a result of this study, first, both cognitive and emotional motivation had a positive influence on fanship and attractiveness for virtual influencer. In addition, it was found that there was a difference in follow motive according to gender. Second, in order to lead to the intention of visiting hospitals, which is the medical service industry, only the cognitive motives with useful and reliable information and useful information for the virtual influencer were found to be significant in intention to visit.

A Study on Tourism Behavior in the New normal Era Using Big Data (빅데이터를 활용한 뉴노멀(New normal)시대의 관광행태 변화에 관한 연구)

  • Kyoung-mi Yoo;Jong-cheon Kang;Youn-hee Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.167-181
    • /
    • 2023
  • This study utilized TEXTOM, a social network analysis program to analyze changes in current tourism behavior after travel restrictions were eased after the outbreak of COVID-19. Data on the keywords 'domestic travel' and 'overseas travel' were collected from blogs, cafes, and news provided by Naver, Google, and Daum. The collection period was set from April to December 2022 when social distancing was lifted, and 2019 and 2020 were each set as one year and compared and analyzed with 2022. A total of 80 key words were extracted through text mining and centrality analysis was performed using NetDraw. Finally, through the CONCOR, the correlated keywords were clustered into 4. As a result of the study, tourism behavior in 2022 shows tourism recovery before the outbreak of COVID-19, segmentation of travel based on each person's preferred theme, prioritization of each country's corona mitigation policy, and then selecting a tourist destination. It is expected to provide basic data for the development of tourism marketing strategies and tourism products for the newly emerging tourism ecosystem after COVID-19.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

An exploratory study on Social Network Services in the context of Web 2.0 period (웹 2.0 시대의 SNS(Social Network Service)에 관한 고찰)

  • Lee, Seok-Yong;Jung, Lee-Sang
    • Management & Information Systems Review
    • /
    • v.29 no.4
    • /
    • pp.143-167
    • /
    • 2010
  • Diverse research topics relating to Social Network Services (SNS) such as, social affective factors in relationships among internet users, social capital value of SNS, comparing attributes why users are intending to participate in SNS, user's lifestyle and their preferences, and the exploratory seeking potential of SNS as a social capital need to be focused on. However, these researches that have been undertaken only consider facts at a particular period of the changing computing environment. In accordance with this indispensability, the integrated view on what technical, social and business characteristics and attributes need to be acknowledged. The purpose of this study is to analyze the evolving attributes and characteristics of SNS from Web 1.0 to Mobile web 2.0 through the Web 2.0 and Mobile 1.0 period. Based on the relevant literature, the attributes that drive the changing technological, social and business aspects of SNS have been developed and analyzed. This exploratory study analyzed major attributes and relationships between SNS and users by changing the paradigms which represented each period. It classified and chronicled each period by representing paradigms and deducted the attributes by considering three aspects such as technological, social and business administration. The major findings of this study are, firstly, the web based computing environment has been changed into the platform attribute for users in the aspect of technology. Users can only read, listen and view information through the web site in the early stages, but now it is possible that users can create, modify and distribute all kinds of information. Secondly, the few knowledge producers of web services have been changed into a collective intelligence by groups of people in the aspect of society. Information authority has been distributed and there is no limit to its spread. Many businesses recognized the potential of the SNS and they are considering how to utilize these advantages toward channel of promotion and marketing. Thirdly, the conventional marketing channel has been changed into oral transmission by using SNS. The market of innovative mobile technology such as smart phones, which provide convenience and access-ability toward customers, has been enlarged. New opportunities to build friendly relationship between business and customers as a new marketing chance have been created. Finally, the role of the consumer has been changed into the leading role of a prosumer. Users can create, modify and distribute information, and are performing the dual role of customer and producer.

  • PDF

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Analyzing the Effect of Online media on Overseas Travels: A Case study of Asian 5 countries (해외 출국에 영향을 미치는 온라인 미디어 효과 분석: 아시아 5개국을 중심으로)

  • Lee, Hea In;Moon, Hyun Sil;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.53-74
    • /
    • 2018
  • Since South Korea has an economic structure that has a characteristic which market-dependent on overseas, the tourism industry is considered as a very important industry for the national economy, such as improving the country's balance of payments or providing income and employment increases. Accordingly, the necessity of more accurate forecasting on the demand in the tourism industry has been raised to promote its industry. In the related research, economic variables such as exchange rate and income have been used as variables influencing tourism demand. As information technology has been widely used, some researchers have also analyzed the effect of media on tourism demand. It has shown that the media has a considerable influence on traveler's decision making, such as choosing an outbound destination. Furthermore, with the recent availability of online information searches to obtain the latest information and two-way communication in social media, it is possible to obtain up-to-date information on travel more quickly than before. The information in online media such as blogs can naturally create the Word-of-Mouth effect by sharing useful information, which is called eWOM. Like all other service industries, the tourism industry is characterized by difficulty in evaluating its values before it is experienced directly. And furthermore, most of the travelers tend to search for more information in advance from various sources to reduce the perceived risk to the destination, so they can also be influenced by online media such as online news. In this study, we suggested that the number of online media posting, which causes the effects of Word-of-Mouth, may have an effect on the number of outbound travelers. We divided online media into public media and private media according to their characteristics and selected online news as public media and blog as private media, one of the most popular social media in tourist information. Based on the previous studies about the eWOM effects on online news and blog, we analyzed a relationship between the volume of eWOM and the outbound tourism demand through the panel model. To this end, we collected data on the number of national outbound travelers from 2007 to 2015 provided by the Korea Tourism Organization. According to statistics, the highest number of outbound tourism demand in Korea are China, Japan, Thailand, Hong Kong and the Philippines, which are selected as a dependent variable in this study. In order to measure the volume of eWOM, we collected online news and blog postings for the same period as the number of outbound travelers in Naver, which is the largest portal site in South Korea. In this study, a panel model was established to analyze the effect of online media on the demand of Korean outbound travelers and to identify that there was a significant difference in the influence of online media by each time and countries. The results of this study can be summarized as follows. First, the impact of the online news and blog eWOM on the number of outbound travelers was significant. We found that the number of online news and blog posting have an influence on the number of outbound travelers, especially the experimental result suggests that both the month that includes the departure date and the three months before the departure were found to have an effect. It is shown that online news and blog are online media that have a significant influence on outbound tourism demand. Next, we found that the increased volume of eWOM in online news has a negative effect on departure, while the increase in a blog has a positive effect. The result with the country-specific models would be the same. This paper shows that online media can be used as a new variable in tourism demand by examining the influence of the eWOM effect of the online media. Also, we found that both social media and news media have an important role in predicting and managing the Korean tourism demand and that the influence of those two media appears different depending on the country.

Characteristics of Places to Visit and Hanbok-Trip Class as a Landscape Prosumer - Focused on Gyeongbokgung Palace - (경관 프로슈머로서 한복나들이 향유계층과 방문 장소 특성 연구 - 경복궁을 대상으로 -)

  • Jeon, Seong-Yeon;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.80-91
    • /
    • 2017
  • This study identifies factors of Hanbok-trippers - a term for people who dress in Hanbok(Korean traditional costume) while going on a trip - who converge on Gyeongbokgung Palace by determining the characteristics of class, places to visit and preferred places. This study interprets the voluntary hobby activities of Hanbok-trippers from a viewpoint of a landscape prosumer and the meaning of the urban landscape. As a result of in-depth interviews, on-site survey, and observation surveys focused on Hanbok-trippers, there were various levels of participants. They are classified into three groups - leading group, entry group, temporary-experience group - according to their cognitions, types of Hanbok use, activities, etc. The leading group and entry group are a voluntary hobbyist class due to the ongoing tendencies of their participation. There are differences in the purpose and factors of visiting Gyeongbokgung Palace as a place for a Hanbok-trip. The leading group visited Gyeongbokgung Palace for cultural activities, regular get-together, public relations, and as a gathering place to go neighboring destinations. In this case, the main factors of the visit are the traditional landscape, convenient transportation, chances for traditional culture exhibitions and events in Gyeongbokgung Palace and its neighborhood. The entry group visits Gyeongbokgung Palace because of its traditional landscape and cultural activities nearby. The traditional landscape and many Hanbok-trippers are main factors of visiting Gyeongbokgung Palace for the Temporary-experience group. This study found that Gyeongbokgung Palace has a new sense of place of 'Introductory course of Hanbok-trip', 'Hanbok Playground' because temporary-experience group visits there to experience a Hanbok-trip for the first time. Hanbok-trippers consume places and landscape in actual places offline, producing a new landscape at the same time, and has the characteristics of a 'landscape prosumer' by producing landscape images online through their own personal or social media. Their colorful and voluntary movements contribute to the dynamism of the urban landscape and can become a new cultural asset for the city. The voluntary hobbyist class can be considered a new type of participants in bottom-up planning such as urban regeneration and place marketing. This study has significance in that it conceptualized the 'landscape prosumer' through the voluntary hobbyist class of Hanbok-trippers with the concept of the 'prosumer' that has been studied only in the consumer studies and marketing fields, and has identified the significance of the urban landscape.

Designing an Intelligent Advertising Business Model in Seoul's Metro Network (서울지하철의 지능형 광고 비즈니스모델 설계)

  • Musyoka, Kavoya Job;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.1-31
    • /
    • 2017
  • Modern businesses are adopting new technologies to serve their markets better as well as to improve efficiency and productivity. The advertising industry has continuously experienced disruptions from the traditional channels (radio, television and print media) to new complex ones including internet, social media and mobile-based advertising. This case study focuses on proposing intelligent advertising business model in Seoul's metro network. Seoul has one of the world's busiest metro network and transports a huge number of travelers on a daily basis. The high number of travelers coupled with a well-planned metro network creates a platform where marketers can initiate engagement and interact with both customers and potential customers. In the current advertising model, advertising is on illuminated and framed posters in the stations and in-car, non-illuminated posters, and digital screens that show scheduled arrivals and departures of metros. Some stations have digital screens that show adverts but they do not have location capability. Most of the current advertising media have one key limitation: space. For posters whether illuminated or not, one space can host only one advert at a time. Empirical literatures show that there is room for improving this advertising model and eliminate the space limitation by replacing the poster adverts with digital advertising platform. This new model will not only be digital, but will also provide intelligent advertising platform that is driven by data. The digital platform will incorporate location sensing, e-commerce, and mobile platform to create new value to all stakeholders. Travel cards used in the metro will be registered and the card scanners will have a capability to capture traveler's data when travelers tap their cards. This data once analyzed will make it possible to identify different customer groups. Advertisers and marketers will then be able to target specific customer groups, customize adverts based on the targeted consumer group, and offer a wide variety of advertising formats. Format includes video, cinemagraphs, moving pictures, and animation. Different advert formats create different emotions in the customer's mind and the goal should be to use format or combination of formats that arouse the expected emotion and lead to an engagement. Combination of different formats will be more effective and this can only work in a digital platform. Adverts will be location based, ensuring that adverts will show more frequently when the metro is near the premises of an advertiser. The advertising platform will automatically detect the next station and screens inside the metro will prioritize adverts in the station where the metro will be stopping. In the mobile platform, customers who opt to receive notifications will receive them when they approach the business premises of advertiser. The mobile platform will have indoor navigation for the underground shopping malls that will allow customers to search for facilities within the mall, products they may want to buy as well as deals going on in the underground mall. To create an end-to-end solution, the mobile solution will have a capability to allow customers purchase products through their phones, get coupons for deals, and review products and shops where they have bought a product. The indoor navigation will host intelligent mobile-based advertisement and a recommendation system. The indoor navigation will have adverts such that when a customer is searching for information, the recommendation system shows adverts that are near the place traveler is searching or in the direction that the traveler is moving. These adverts will be linked to the e-commerce platform such that if a customer clicks on an advert, it leads them to the product description page. The whole system will have multi-language as well as text-to-speech capability such that both locals and tourists have no language barrier. The implications of implementing this model are varied including support for small and medium businesses operating in the underground malls, improved customer experience, new job opportunities, additional revenue to business model operator, and flexibility in advertising. The new value created will benefit all the stakeholders.