• Title/Summary/Keyword: 소성해석법

Search Result 443, Processing Time 0.028 seconds

Development of 3D Sheet Metal Forming Analysis Program by explicit finite element method (외연적 탄소성 유한요소법에 의한 3차원 박판금속 성형해석 프로그램 개발)

  • 정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.217-221
    • /
    • 1997
  • In this study, 3D sheet metal forming analysis program is developed by explicit finite element method. In this program, analysis flow just follows the real engineering process to provide the user intuitive understanding and smooth contact alorithm improves the accuracy of stress prediction. The capability of this program are demonstrated by various examples.

  • PDF

Simulation of Stamping of an Automotive Panel using a Finite Element Method (유한요소법을 이용한 자동차 패널의 성형 해석)

  • 이종길;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF

Process Analysis of Precision Press Forming by the Finite Element Method (유한요소법을 활용한 정밀전자부품 성형공정 해석)

  • 양순종;변상규;최홍석;하석준;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.53-56
    • /
    • 1997
  • The multistage precision forming process for aperture of electronic guns consists mainly of drawing and swaging operations. The multistage forming sequence is analyzed in view of production industry, and based on the industrial investigation. The processes are simulated by the finite element code MARC. The elastic recovery, strain and stress distribution, and the die forces are summarized.

  • PDF

Plastic Design Method for Moment Resisting Frame based on Designer's Acceptable Matrix (설계자 만족도 매트릭스를 이용한 골조 구조물의 소성해석법)

  • Song, Ki-Young;Lee, Seung-Jae;Oh, Sang-Hoon;Kang, Chang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.165-169
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

Axisymmetric Multi-Stage Deep Drawing Dies Design Analysis Using Finite Element Method (유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석)

  • 이동호;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.65-73
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation, the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points, the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurements and PAM-STAMP.

A Study on the Shape and Size Effects on the Stability of Underground Openings (지하공동의 형상과 규모가 공동의 안정성에 미치는 영향 연구)

  • 박상찬;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.93-108
    • /
    • 1998
  • In this study, the analytic solutions and numerical methods were used to estimate the shape and size effects on the stability of underground openings. The stability of underground openings was evaluated by scrutinizing the effects of the rock mass quality, the state of in-situ stresses and the lateral earth pressure coefficient on the displacement, the stress concentration and the plastic region developed in the vicinity of the openings. The analytic solutions have shown that the stress concentration factor is inversely proportional to the radius of curvature of openings. Through parametric study on the various shapes and sizes of underground openings the characteristics of the controlling factors concerned with the stability were analyzed. Then, the study was extended to the horseshoe-shaped openings commonly used for under ground storage. Through the extended study the effects of the stress ratio and the height-towidth ratio of openings on the maximum displacement and plastic region developed around the openings were estimated. The results have shorn that the height-to-width ratio of domestic storage caverns can be increased economically without stability problem, as far as the lateral earth pressure coefficient is appropriate.

  • PDF

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.

3차원 강소성 유한요소법을 이용한 링 로울링 공정의 해석

  • 김낙수
    • Journal of the KSME
    • /
    • v.30 no.3
    • /
    • pp.237-245
    • /
    • 1990
  • 3차원 강소성 유한요소법과 독특한 updating 방법으로 실험결과와 잘 일치하는 실용적인 프로그 램을 개발할 수 있었다. 몇 가지 해석결과의 예에서 알 수 있듯이 소재의 변형을 정확하게 예 측할 수 있고, 임의의 단면현상을 가진 로울에 대하여도 해석이 용이하였다. 링 로울링의 제작 공정을 3차원 강소성유한요소법으로 해석할 수 있고, 실험적으로 해석결과의 타당성을 결정지 음에 따라서, 링 로울링에 대한 연구결과는 보편적인 기대 이상으로 첨단산업분야에 기여할 수 있을 것으로 보여진다. 현재 링 로울링에 대한 국내에서의 관심은 비교적 적은 편이나, 항공우 주산업 분야중 부품제작분야 및 제반 기계공업분야 특히 소성성형가공 분야에서, 해석적 방법의 지속적인 개발 및 실험적 연구와 뒷받침은 궁극적으로 이 분야의 공정 및 소재 설계의 자동화 내지는 전산화로 이끌 것이며, 장차 이 분야를 국제적으로 주도해 나가고자 하는 데 필수적인 것으로 여겨진다.

  • PDF

Numerical analysis of induction heating for the application of line heating (선상 가열을 위한 고주파 유도 가열의 수치 해석)

  • Jung-Gyu Kang;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.110-121
    • /
    • 2000
  • Gas heating, high frequency induction heating and laser heating can be used as the heat-source of line heating. Most of shipyards have been using the gas heating method for line heating. It is difficult to control the residual deformation of gas heating. High frequency induction heating is more feasible for the automation of line heating rather than the gas heating method since it is easy to control the magnitude of heat input. In this study, a numerical model of high frequency induction heating process is proposed for the application of the line heating. The simulation process of the induction heating is composed of the electromagnetic analysis, the heat transfer analysis, and the thermal deformation analysis.

  • PDF

A Study on the Prediction of Deformations of Plates due to Line Heating Using a Simplified Thermal Elasto-Plastic Analysis Method (간이 열탄소성 해석을 이용한 선상가열에 의한 판의 변형 예측에 관한 연구)

  • Jang, C.D.;Seo, S.I.;Ko, D.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.104-112
    • /
    • 1997
  • Line heating process has been used in forming hull surfaces long before and it has depended on skillful workers. As the reduction of production cost is major concern of shipbuilding companies, line heating work must be improved for higher productivity. In this paper, as the first step to automatic hull forming, a method is proposed to predict deformations due to line heating. It includes a simplified thermal elasto-plastic analysis to increase computing efficiency and to do real time visualization of deformed shapes. For the prediction of deformation, a method to estimate heat flux of the torch is also introduced. Predicted deformations for line heated plates show good agreement with experimental results. The proposed method can be used in control and simulation of line heating process with ease.

  • PDF