• Title/Summary/Keyword: 소동물용

Search Result 19, Processing Time 0.027 seconds

Characterization of Cone-beam Computed Tomography System for Small Animal (콘빔형 소동물용 전산화단층촬영(CT) 장치의 성능평가)

  • Kang, Hyeong-Geun;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • A cone-beam computed tomography (CT) system for a small animal has been widely used in the bio-medical application. This paper introduced simple methods for evaluating a cone-beam CT system using a simple tungsten wire phantom of 10{$\mu}m$ diameter and a water phantom. Slice images and three-dimensional tomography images were obtained through 360 projection views per one sample rotation under stable X-ray tube conditions for a long running time. The cone-beam CT system at a position of a 1.07 magnification showed a spatial frequency of 13.78 lp/mm ($36.2{\mu}m$ spatial resolution) and gave a CNR of 10.33 and a S/N of 5.87 under a tube voltage of 80kV.

소동물용 마이크로 CT의 선량 측정

  • Kim, Hyo-Jin;Gwak, Dong-Won;Mun, Yeong-Min;Gang, Yeong-Rok;Jeong, Dong-Hyeok;Kim, Gyeong-U;Kim, Jeong-Gi;Yang, Gwang-Mo
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.286-287
    • /
    • 2011
  • PDF

Development of Gamma Camera System for Small Animal Imaging and Environmental Radiation Detection (소동물 영상화 및 환경 방사선 검출을 위한 감마카메라 개발)

  • Baek, Cheol-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.475-481
    • /
    • 2014
  • The aim of this work was to develop the gamma camera system for small animal gamma imaging and environmental radiation monitoring imaging using a parallel hole collimator and pinhole collimator. The small gamma camera system consists of a CsI(Tl) scintillation crystal with 6 mm in thickness and $50{\times}50mm$ in area coupled with a Hamamatsu H8500C PSPMT, are resistive charge divider, pre-amplifiers, charge amplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a computer for control and display. We have developed a radiation monitoring system composed of a combined pinhole gamma camera and a charge-coupled devices (CCD) camera. The results demonstrated that the parallel hole collimator and pinhole collimator gamma camera designed in this study could be utilized to perform small animal imaging and environmental radiation monitoring system. Consequently in this paper, we proved that our gamma detector system is reliable for a gamma camera which can be used as small animal imaging and environmental radiation monitoring system.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Image Acquisition Study of Maximal Scintillation Pixel Array using Light Guide (광가이드를 사용한 최대 섬광 픽셀 배열의 영상 획득 연구)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Positron emission tomography for small animals has very high spatial resolution for imaging very small organs. To achieve good spatial resolution, the system must be constructed using very small scintillation pixels. When a detector is constructed using very small scintillation pixels, the size of the applicable array varies depending on the photosensor pixel. In a previous study, a study was conducted to find the maximum scintillation pixel arrangement according to the size of the photosensor. In this study, a detector with a light guide was designed to configure the detector using a more extended array of scintillation pixels, and try to find the maximum arrangement in which all scintillation pixels are imaged. The detector was designed using DETECT2000, which can simulate a detector made of a scintillator. Simulations were performed by configuring the detectors from an 11 × 11 scintillation pixel array to a 16 × 16 array. After obtaining a flood image by collecting the light generated from the scintillation pixel with a photosensor, the largest arrangement without overlap was found through image analysis. As a result, the largest arrangement in which all scintillation pixels could be distinguished without overlapping was a 15 × 15 arrangement.

Design of Small-sized Scintillation Pixel Detector with a Light Guide made of the Same Material as the Scintillation Pixel (섬광 픽셀과 동일한 물질로 광가이드를 적용한 매우 작은 섬광 픽셀 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.523-529
    • /
    • 2023
  • In order to achieve excellent spatial resolution, very small scintillation pixels are used in detectors of positron emission tomography for small animals. However, by using these very small scintillation pixels, scintillation pixels at the edge of the array may overlap in a flood image. To solve this problem, a light guide capable of changing the distribution of light was used. Depending on the material of the light guide, the light spreading tendency is different, and accordingly, the presence or absence of overlapping is different depending on the material of the light guide used. In this study, instead of the conventional glass light guide, a detector using the same material as the scintillation pixel was designed. A scintillator light guide has a higher refractive index than a glass light guide, so the light spread is different. Flood images were acquired to evaluate the degree of separation of the scintillation pixels at the edge of the detector using the two light guides. The degree of separation was evaluated by calculating the distance between the center and the spatial resolution of the image of two scintillation pixels at the edge of the obtained flood image. As a result, when the scintillator light guide was used, better spatial resolution was shown, and the distance between centers of scintillation pixels was wider. When a detector is constructed using a scintillator light guide instead of a conventional glass light guide, it is possible to use a smaller scintillation pixel, thereby securing better spatial resolution.

A Low-Dose High-Resolution SPECT System with CdTe for Small-Animal Imaging Applications: A GATE Simulation Study (GATE 시뮬레이션을 통한 고해상도 저선량용 소동물 영상화를 위한 CdTe 검출기 기반의 SPECT 기기 연구)

  • Park, Su-Jin;Yu, A Ram;Kim, Yeseul;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.162-170
    • /
    • 2013
  • Dedicated single-photon emission computed tomography (SPECT) systems based on pixelated semiconductors are being developed for studying small animal models of human disease. To clarify the possibility of using a SPECT system with CdTe for a high resolution low-dose small animal imaging, we compared the quality of reconstructed images from pixelated CdTe detector to those from a small SPECT system with NaI(Tl). The CdTe detector was $44.8{\times}44.8$ mm and the pixels were $0.35{\times}0.35{\times}5$ mm. The intrinsic resolution of the detector was 0.35 mm, which is equal to the pixel size. GATE simulations were performed to assess the image quality of both SPECT systems. The spatial resolutions and sensitivities for both systems were evaluated using a 10 MBq $^{99m}Tc$ point source. The quantitative comparison with different injected dose was performed using a voxelized MOBY phantom, and the absorbed doses for each organ were evaluated. The spatial resolution of the SPECT with NaI(Tl) was about 1.54 mm FWHM, while that of the SPECT with a CdTe detector was about 1.32 mm FWHM at 30 mm. The sensitivity of NaI(Tl) based SPECT was 83 cps/MBq, while that of the CdTe detector based SPECT was 116 cps/MBq at 30 mm. The image statistics were evaluated by calculating the CNR of the image from both systems. When the injected activity for the striatum in the mouse brain was 160 Bq/voxel, the CNR of CdTe based SPECT was 2.30 while that of NaI(Tl) based SPECT was 1.85. The CNR of SPECT with CdTe was overall higher than that of the NaI(Tl) based SPECT. In addition, the absorbed dose was higher from SPECT with CdTe than those from NaI(Tl) based SPECT to acquire the same quantitative values. Our simulation results indicated that the SPECT with CdTe detector showed overall high performance compared to the SPECT with NaI(Tl). Even though the validation study is needed, the SPECT system with CdTe detector appeared to be feasible for high resolution low-dose small animal imaging.

Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging (소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가)

  • Yu, A-Ram;Kim, Jin-Su;Kim, Kyeong-Min;Lee, Young-Sub;Kim, Jong-Guk;Woo, Sang-Keun;Park, Ji-Ae;Kim, Hee-Joung;Cheon, Gi-Jeong
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET is a recently developed preclinical PET system for small animal. This study was conducted to measure the performance of Inveon PET as recommended by the NEMA NU 4-2008. We measured the spatial resolution, the sensitivity, the scatter fraction and the NECR using a F-18 source. A 3.432 ns coincidence window was used. A $1\;mm^3$ sized F-18 point source was used for the measurement of spatial resolution within an energy window of 350~625 keV. PET acquisition was performed to obtain the spatial resolution from the center to the 5 cm offset toward the edge of the transverse FOV. Sensitivity, scatter fraction, and NECR were measured within an energy window of 350~750 keV. For measuring the sensitivity, a F-18 line source (length: 12.7 cm) was used with concentric 5 aluminum tubes. For the acquisition of the scatter fraction and the NECR, two NEMA scatter phantoms (rat: 50 mm in diameter, 150 mm in length; mouse: 25 mm in diameter, 70 mm in length) were used and the data for 14 half-lives (25.6 hr) was obtained using the F-18 line source (rat: 316 MBq, mouse: 206 MBq). The spatial resolution of the F-18 point source was 1.53, 1.50 and 2.33 mm in the radial, tangential and axial directions, respectively. The volumetric resolution was $5.43\;mm^3$ in the center. The absolute sensitivity was 6.61%. The peak NECR was 486 kcps @121 MBq (rat phantom), and 1056 kcps @128 MBq (mouse phantom). The values of the scatter fraction were 20.59% and 7.93% in the rat and mouse phantoms, respectively. The performances of the Inveon animal PET scanner were measured in this study. This scanner will be useful for animal imaging.

Establishment of a Hepatocellular Carcinoma Cell Line Expressing Dual Reporter Genes: Sodium Iodide Symporter (NIS) and Enhanced Green Fluorescence Protein (EGFP) (나트륨 옥소 공동수송체 유전자와 녹색 형광 유전자의 이중 리포터 유전자를 발현하는 간암세포주 확립)

  • Kwak, Won-Jung;Koo, Bon-Chul;Kwon, Mo-Sun;Lee, Yong-Jin;Lee, Hwa-Young;Yoo, Jeong-Soo;Kim, Te-Oan;Chun, Kwon-Soo;Cheon, Gi-Jeong;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.226-233
    • /
    • 2007
  • Purpose: Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. Materials and Methods: A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. Results: The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, $T_{1/2}$ of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. Conclusion: A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene.

Small Animal PET Imaging Study of 68Ga-BAPEN (68Ga-BAPEN 소동물 PET영상 연구)

  • Kim, Ji-Who;Lee, Jae-Sung;Yang, Bo-Yeun;Kim, Su-Jin;Kim, Joong-Hyun;Jeong, Jae-Min;Lee, Dong-Soo
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.172-177
    • /
    • 2011
  • The purpose of this study was to analyze $^{68}Ga$-BAPEN dynamic PET image in rat myocardium to evaluate potential of this radiotracer as a perfusion imaging agent. Animal PET/CT scan was done in 9 rats during 120 minutes. Especially we synthesized $^{68}Ga$-BAPEN with kit which is simple and low cost method. PET images showed the in vivo dynamic distribution of $^{68}Ga$-BAPEN in the chest region of rats. Initially $^{68}Ga$-BAPEN PET images showed aorta and liver activities and a few minutes later, $^{68}Ga$-BAPEN moved to myocardium. Regions of interest were drawn on myocardium, liver, lung and blood pool. Time-activity curves showed significant uptake of $^{68}Ga$-BAPEN in myocardium. The contrast ratios of myocardial to blood pool, lung and liver at 60 minutes after injection were 1.66, 2.82 and 0.60. To estimate accurate kinetic parameters, 60 minutes after injection was required to PET scan as myocardium image contrast ratios reached to constant values. As a result, $^{68}Ga$-BAPEN would be suitable radiotracer for PET which can applied to diagnosis of myocardial perfusion diseases after further preclinical and clinical investigations.