References
- Schwaiger M, Muzik O: Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 67:35D-43D (1991) https://doi.org/10.1016/S0002-9149(05)80006-2
- Degrado TR, Bergmann SR, Ng CK, Raffel DM: Tracer kinetic modeling in nuclear cardiology. J Nucl Cardiol 7:686-700 (2000) https://doi.org/10.1067/mnc.2000.111127
- Camici PG: Positron emission tomography and myocardial imaging. Heart 83:475-480 (2000) https://doi.org/10.1136/heart.83.4.475
-
Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R: Quantitative myocardial perfusion and coronary reserve in rats with
$^{13}N-ammonia$ and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 45:1924-1930 (2004) -
Nekolla SG, Reder S, Saraste A, et al: Evaluation of the novel myocardial perfusion positron-emission tomography tracer
$^{18}F$ -BMS-77158-02. comparison to$^{13}N-ammonia$ and validation with microsphere in a pig model. Circulation 119:2333-2342(2009) https://doi.org/10.1161/CIRCULATIONAHA.108.797761 -
Higuchi T, Nekolla SG, Huisman MM, et al: A new
$^{18}F-labeled$ myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. J Nucl Med 49:1715-1722 (2008) https://doi.org/10.2967/jnumed.108.053967 - Go RT, Marwick TH, Maclntyre WJ, et al: A prospective comparison of Rubidium-82 PET and Thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J NucI Med 31: 1899-1905 (1990)
-
Choi Y, Huang SC, Hawkins RA, et al: Quantification of myocardial blood flow using
$^{13}N-ammonia$ and PET: comparison of tracer models. J Nucl Med 40:1045-1055 (1999) -
Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA: Quantification of myocardial blood flow with
$^{82}Rb$ dynamic PET imaging. Eur J Nucl Med Mol Imaging 34:1765-1774 (2007) https://doi.org/10.1007/s00259-007-0478-2 - Klein R, Renaud JM, Ziadi MC, et al: Intra- and inter- operator repeatability of myocardial blood flow and myocardial flow reserve measurements using Rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 17: 600-616 (2010) https://doi.org/10.1007/s12350-010-9225-3
- Eisner R, Churchwell A, Noever T, et al: Quantitative analysis of the tomographie Thallium-201 myocardial bullseye display critical role of correcting for patient motion. J Nucl Med 29:92-97 (1988)
-
EL Fakhri G, Kardan A, Sitek A, et al: Reproducibility and accuracy of quantitative myocardial blood flow assessment with
$^{82}Rb$ PET: comparison with$^{13}N-ammonia$ PET. J Nucl Med 50:1062-1071 (2009) https://doi.org/10.2967/jnumed.104.007831 -
Tsang BW, Mathias CJ, Green MA: A Gallium-68 radiopharmaceutical that is retained in myocardium:
$^{68}Gal[(4,6-MeO_2sal)_2BAPEN]^+$ . J Nucl Med 34:1127-1131 (1993) -
Nitzsche EU, Choi Y, Czemin J, Hoh CK, Huang SC, Schelbert HR: Noninvasive quantification of myocardial blood flow in humans: a direct comparison of the
$[^{13}N]ammonia$ and the$[^{15}O]water$ techniques. Circulation 93:2000-2006 (1996) https://doi.org/10.1161/01.CIR.93.11.2000 -
Lee JS, Lee DS, Ahn JY, et al: Parametric image of myocardial blood flow generated from dynamic
$H_2^{15}O$ PET using factor analysis and cluster analysis. Med Biol Eng Comput 43:678-685 (2005) https://doi.org/10.1007/BF02351043 -
Ahn JY, Lee DS, Lee JS, et al: Quantification of regional myocardial blood flow using dynamic
$H_2^{15}O$ PET and factor analysis. J Nucl Med 42:782-787 (2001) -
Lee JS, Lee DS, Ahn JY, et al: Blind separation of cardiac components and extraction of input function from
$H_2^{15}O$ dynamic myocardial PET using independent component analysis. J Nucl Med 42:938-943 (2001) -
Lee JS, Lee DS, Ahn JY, et al: Generation of parametric image of regional myocardial blood flow using
$H_2^{15}O$ dynamic PET and a linear least-squares method. J Nucl Med 46:1687-1695 (2005) -
Hsiao YM, Mathias CJ, Wey SP, Fanwick PE, Green MA: Synthesis and biodistribution of lipophilic and monocationic gallium radiophramceuticals derived from N, N'-bis(3-aminopropyl)- N, N'-dimethylethylenediamine: potential agents for PET myocardial Imaging with
$^{68}Ga$ . Nucl Med Biol 36:39-45 (2008) -
Yang BY, Jeong JM, Kim YJ, et al: Formulation of
$^{68}Ga$ BAPEN kit for myocardial positron emission tomography Imaging and biodistribution study. Nucl Med Biol 37:149-155 (2010) https://doi.org/10.1016/j.nucmedbio.2009.10.010 - Lee JS, Park KS, Lee DS, Lee CW, Chung JK, Lee MC: Development and applications of a software for Functional Image Registration (FIRE). Comput Meth Prog Bio 78:157-164 (2005) https://doi.org/10.1016/j.cmpb.2004.12.007
- Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M: Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34:83-91 (1993)
- Iida H, Rhodes CG, de Silva R, et al: Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. J Nucl Med 32:2169-2175 (1991)
- Carvalho PA, Chiu ML, Kronauge JF, et al: Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 33:1516-1522 (1992)
- Crane P, Laliberté R, Heminway S, et al: Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 20:20-25 (1993) https://doi.org/10.1007/BF02261241
-
Wang J, Yang CT, Kim YS, et al:
$^{64}Cu--Labeled$ triphenylphosphonium and triphenylarsonium cations as highly tumorselective imaging agents. J Med Chem 50:5057-5069 (2007) https://doi.org/10.1021/jm0704088