• Title/Summary/Keyword: 소나무 뿌리

Search Result 89, Processing Time 0.033 seconds

Heavy Metal Concentration of Soils and Plants in Baekdong Serpentinite Area, Chungnam - A Case of Pinus densiflora and Pinus rigida - (충남 백동 사문암지역의 토양 및 식물체내 중금속 함량 - 소나무 및 리기다소나무를 중심으로 -)

  • 민일식;송석환;김명희;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1998
  • Heavy metal concentrations in rocks and soils from serpentinite(SP) and in plants (Pinus densiflora: PD and Pinus rigida: PR) were examined at Baekdong mine in Hongsung, Chungnam. Parent rocks were compared with amphibole schist(AS) and gneiss(GN) and plants divided the above grounds and roots were examined, respectively. In rocks, Ni, Cr, Co, Fe concentrations in SP were higher than those in AS and GN. The concentrations of top soils had the similar differences to their rocks; especially Ni, Cr, Co, Fe concentrations were the highest in SP, Zn and Sc concentrations, however, were the highest in AS. Average Ni, Cr, Co, Au, As, Sb, W concentrations of PD were the highest in SP and especially Ni, Cr, Co concentrations were accorded with changes of rocks and top soils. Zn and Sc concentrations in AS were higher and Fe and Mo concentrations in GN were higher than those in SP. Compared with two plants in the same serpentinite sites, most elements of PR were higher than those of PD. Therefore, these suggested PR absorbed much heavy metal than PD. Most element concentrations of roots in two plants and three rocks were higher than those of the above ground. Relative ratios (average plant concentration/soil concentration) of Ni, Cr, Co, Zn, Sc, Fe in AS and GN were higher than those of SP. Especially, relative ratios of most elements except Zn in GN were the highest.

  • PDF

Effects of Controlling the Pine Needie Gall Midaes by Salicylic Acid Content in Needles of Some Pinus spp. (소나무류(類) 침엽내(針葉內)의 salicylic acid에 의한 솔잎혹파리의 방제효과(防除效果))

  • Son, Doo-Sik;Eom, Tae-Jin;Choi, Chang-Ok;Zhang, Ruo Ming
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • The frequency of gall formation by pine needle gall midges ranged from 35% to 40% in both P. densiflora and P. thunbergii species. However, there was no indication of gall development from larva on both P. virgiana and P. rigida species suggesting that some specific compounds might play role in preventing gall formation of larva. The susceptible species to pine needle gall midges including P. densiflora and P. thunbergii contained a little salicylic acid under the free phenolic compound conditions while the resistant species against such insects including P. virginiana and P. rigida species contained about 37ppm to 50ppm of salicylic acid. Thus, this compound might have important roles in insect resistance. The contents of internal salicylic acid in the needles of susceptible pines increased from 9.5ppm to 20.6ppm after direct external irrigation of salicylic acid solution and flour treatment on roots. As a result, the frequency of gall formation decreased dramatically 17~19 times lower when compared with that of control. According to our results, the application of salicylic acid for effective prevention against insect damages should be performed before hatching eggs. The frequency of gall formation in the hybrid pines of P. thunbergii(susceptible) and P. virginiana(resistant) showed approximately 24% as average value of those in both species. In the case of specific individuals, it ranged from 2.8% to 11.5% in hybrids of both species. Therefore, effective production of insect resistant pines can be obtained through hybrids by crossing between susceptible and resistant species including P. thunbergii and P. virginiana by increasing internal salicylic acid contents of the needles.

  • PDF

Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge (백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링)

  • Han, Seung Hyun;Kim, Jung Hwan;Kang, Won Seok;Hwang, Jae Hong;Park, Ki Hyung;Kim, Chan-Beom
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • This study was conducted to monitor the soil characteristics and growth of Pinus densiflora and to determine the effect of soil characteristics on growth rate five years after an ecological restoration project in Baekdudaegan ridge including Ihwaryeong, Yuksimnyeong, and Beoljae sites. The ecological restoration project was executed with the forest of P. densiflora in 2012-2013. In April 2018, we collected soil samples from each site and measured the height and the diameter at breach height (DBH) of P. densiflora. Although there was no significant change of soil pH compared to the early stage of restoration (one year after the project), it was high in Ihwaryeong, and Beoljae with values of 7.7 and 6.4, respectively. Also, the organic matter decreased by 70-80%, and the available phosphorus (P) was unchanged in three restoration sites. The decreased organic matter can be attributed to restriction of inflow and thus decomposition of litter in the early stage after the restoration. The tree height growth rate ($m\;yr^{-1}$) of P. densiflora in Yuksimnyeong was the highest at 1.02, followed by Beolja at 0.75 and Ihwaryeong at 0.17. The height growth rate showed negative relationships with soil pH and cations, including Na and Ca concentrations and a positive relationship with available phosphate. The low growth rate in the Ihwaryeong site, in particular, might result from the poor nutrient availability due to high soil pH and the decrease in water absorption into the root due to high Na and Ca concentrations. The substantial reduction of organic matter after five years indicates that the need for soil improvement using chemical fertilizer and biochar.

Correlation of Above- and Below-ground Biomass Between Natural and Planted Stands of Pinus densiflora for. erecta of One Age-class in Gangwon Province (강원지역 1영급 금강소나무에 대한 천연림과 인공림의 지상부와 지하부 상관관계)

  • Na, Sung-Joon;Kim, Chang-Soo;Woo, Kwan-Soo;Kim, Hye-Jin;Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • This study was conducted to analyze correlation of above- and below-ground biomass and to drive regression equation suitable for estimating standing tree biomass between natural and planted stands of Pinus densiflora for. erecta of one age-class in Gangwon province, Republic of Korea. Total 40 trees, 10 from the naturally regenerated and 10 from the planted stands in each of two studied sites, were uprooted to measure height, diameter at root color (DRC), and the dry weights of stem, branches, and needles. The length, weight, and volume of the main and horizontal roots were also measured. Most of the above-ground traits except height were highly correlated with most of the other above-ground traits and the below-ground traits except the length of roots (p < 0.05). Especially, the DRC, which is measured easily on the standing tree, was highly correlated with most of the traits in all studied stands (p < 0.01). Thus, the DRC would be the most desirable trait to estimate not only above-ground biomass but also below-ground biomass. However, height was not a good variable to estimate standing tree biomass of Pinus densiflora for. erecta of one age-class in Gangwon province because it was not correlated with most of other traits. Regression equations derived from the current study could be used effectively as a basic data for estimating above-ground and below-ground biomass using DRC.

Studies on Rhizina Root Rot Disease of Pinus densiflora : Physiological Characteristics and Pathogenicity of Rhizina undulata (소나무 리지나뿌리썩음병(病)에 관(關)한 연구(硏究) : Rhizina undulata의 생리적(生理的) 특성(特性) 및 병원성(病原性))

  • Lee, Sang Yong;Kim, Wan Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.322-329
    • /
    • 1990
  • A group of Pinus densiflora trees attacked by Rhizina root rot were observed at Kangnung. Diseased roots are characterized by rot patches, radial rot traces or formation of adhesive soil masses. The damage has proceeded about 6m per annum, and the pathogen in the infected soil was detected by trap logs. Ascospores of Rhizina undulata was germinated by heat shock at $37^{\circ}C$ for 24 hours or at $40^{\circ}C$ for 17 hours. The mycerial growth was optimum on PDA medium at $25-30^{\circ}C$and pH 5.6-6.3. Coniferous trees were more susceptible than non-coniferous trees in inoculation test in vitro.

  • PDF

Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands (소나무 유령림의 임목밀도 조절이 탄소 동태에 미치는 영향)

  • Song, Su-Jin;Jang, Kyoung-Soo;Hwang, In-Chae;An, Ki-Wan;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • The objective of this study was to examine carbon dynamics with biomass, soil $CO_2$ efflux, litter and root decomposition after tree density control in young Pinus densiflora stands. The stands were established with 50% thinning, clear-cut, and control stands with three pseudo-replicated plots and a bare soil plot in 8-year-old Pinus densiflora nursery field. Monthly measurements were conducted from March 2012 to February 2014 and aboveground biomass and coarse-roots were estimated by derived allometric equations. Average diameter growth at root collar in control and thinned was 0.89 cm and 1.48 cm per year, respectively, and the diameter growth of control stand was significantly higher than that of thinned stands (p<0.05). Total biomass was estimated to 5.17, $4.85kg\;C\;m^{-2}$ per year in control and thinned, respectively. Annual soil $CO_2$ efflux in control, thinned, clear cut, and bare soil was 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$, respectively and removing trees significantly increased soil $CO_2$ efflux (p<0.05). Net Ecosystem Production (NEP) was 1.57, 1.36, -0.67, $-1.25kg\;C\;m^{-2}\;yr^{-1}$ in control, thinned, clear cut and bare soil in the young Pinus densiflora stands. NEP was significantly decreased by removing trees. Thinning increased diameter at root collar and carbon of individual tree and recovered 86% of carbon removed by thinning after one-year. In addition, soil $CO_2$ efflux increased and NEP increased by thinning. Results of this study, tree density control such as thinning increased the carbon storage and growth of the young Pinus densiflora stands.

Vegetation Distribution Near Abandoned Metalliferous Mines and Seed Germination Properties of Woody Plants by the Contaminated Soils (폐광산 주변의 목본 식생 현황 및 오염 토양에 대한 목본 종자의 발아 특성)

  • Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Noh, Nam-Jin;Kyung, Ji-Hyun;Kim, Jeong-Gyu;Son, Yo-Whan
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.47-57
    • /
    • 2006
  • This study was carried out to select the Eco-tree for successful phytoremediation of abandoned metalliferous mines. We examined vegetation and heavy metal concentrations of woody plants in abandoned mining areas, and also conducted seed germination and seedling growth experiment on contaminated soils from Gahak and Geumjeong mines. Pinus densiflora, Robinia pseudoacacia, Lespedeza bicolor and Alnus japonica showed high frequency in the survey areas and had high heavy metal concentrations compared to other species. Heavy metal concentrations were higher in roots than in leaves and stems. The seed germination rate was in the order of P. densiflora, L. bicolor, R. pseudoacacia, and Alnus japonica from the incubactor and greenhouse experiment. In the incubator experiment germination rate was highest in the control soil for P. densiflora and A. japonica. Germination rate of P. densiflora was highest on the 100% contaminated soil for Gahak mine while germination rate decreased with increased percentage of contaminated soil for Geumjeong mine. In the greenhouse experiment germination rate was lowest on the 40% contaminated soil for Gahak mine while germination rate was lowest on the 20% contaminated soil for Geumjeong mine and increased with increased percentage of contaminated soil. Shoot growth was highest for L. bicolor while root growth was highest for R. pseudoacacia except for 20% contaminated soil in Geumjeong mine.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing (차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성)

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

Studies on relationship between composition and type of fertilizer and seedling I. Influence on biomass, specific leaf area and chlorophyll content (비료의 성분 및 종류와 묘목과의 관계 연구 I. 생체량, SLA 및 엽록소 함량에 미치는 영향)

  • 황정옥;손요환;이명종;변재경;정진현;이천용
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.44-53
    • /
    • 2003
  • This study was conducted to develop new fertilizers which can be applied to various environmental conditions. Fertilizers with different levels of nitrogen, phosphorus and potassium, and different types and amount of combined fertilizers were used on 1-1 seedlings of Pinus densiflora, Larix leptolepis, Quercus acutissima, and Betula platyphylla var. japonica. Biomass, specific leaf area (SLA) and chlorophyll content of foliage were measured. Biomass of foliage, shoot, and root showed no differences among fertilization treatments. Biomass of double treatments of solid-combination fertilizer and UF combination fertilizer increased whereas those of triple treatments decreased. SLA ($\textrm{cm}^2$/g) of P. densiflora fo. the 6:4:1 treatment and L. leptolepis for the 3:4:1 treatment showed the highest with 59.2 and 110.0, respectively, but those of Q. arutissima and B. platyphylla var. japonica for the control showed the higher than other treatments with 207.5 and 202.0, respectively. Chlorophyll contents (mg/g) in the foliage of P. densiflora and L. leptolepis fertilized with the 6:4:1 treatment were 0.222 and 0.127, respectively, and these contents were higher than those of the 3:4:1 treatment with 0.211 and 0.082, respectively. These results suggested that the increased nitrogen fertilization had an effort on increase of chlorophyll contents.

  • PDF