DOI QR코드

DOI QR Code

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing

차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성

  • Lee, Byeong-Ju (Department of Forest Resources, Kongju National University) ;
  • Eo, Soo Hyung (Department of Forest Resources, Kongju National University)
  • 이병주 (공주대학교 산림자원학과) ;
  • 어수형 (공주대학교 산림자원학과)
  • Received : 2017.02.07
  • Accepted : 2017.04.11
  • Published : 2017.06.30

Abstract

The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

토양미생물은 산림 생태계 구성 요소로써 산림 내 물질 순환 및 식물 생장 등에 중요한 역할을 한다. 그러나 국내 산림과학분야에서는 토양 균류 일부 종에 대한 연구가 주로 실시되어졌으며, 박테리아를 포함한 미생물 군집에 대한 연구는 부족한 실정이다. 본 연구에서는 16S rRNA gene 영역에 대한 차세대염기서열분석법을 통해, 장군봉 천연 소나무림 토양 내 존재하는 박테리아 군집 구성을 파악하였다. 분석 결과, phylum 수준에서 Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes 등이 나타나, 전형적인 토양 박테리아 군집 구성을 보였다. 또한, 부영양 환경을 선호하는 Proteobacteria가 가장 높은 비율을 차지하였는데, 다른 인공림과 비교하여 장군봉 천연 소나무림 토양 유기물량이 상대적으로 풍부한 것이 원인으로 생각된다. 한편, 토양 내 질소 순환에 기여를 하는 뿌리혹박테리아 분류군을 살펴본 결과, Burkholderia, Bradyrhizobium, Rhizobium 속이 주로 존재하는 것을 확인하였다. 토양 물리 화학적 특성과 박테리아 군집 구성간의 상관관계를 분석한 결과, 토양 내 pH가 박테리아 군집 구성과 관련된 주요 토양 특성인 것으로 확인되었다.

Keywords

References

  1. Banning, N.C., Gleeson, D.B., Grigg, A.H., Grant, C.D., Andersen, G.L., Brodie, E.L. and Murphy, D.V. 2011. Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology 77(17): 6158-6164. https://doi.org/10.1128/AEM.00764-11
  2. Berendsen, R.L., Pieterse, C.M. and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17(8): 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  3. Blagodatskaya,E. V. and Anderson,T. 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry 30(10): 1269-1274. https://doi.org/10.1016/S0038-0717(98)00050-9
  4. Bloomfield, S.F., Stewart, G.S., Dodd, C.E., Booth, I.R. and Power, E. 1998. The viable but non-culturable phenomenon explained? Microbiology 144(1): 1-3. https://doi.org/10.1099/00221287-144-1-1
  5. Bowles, T.M., Acosta-Martinez, V., Calderón, F. and Jackson, L.E. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry 68: 252-262. https://doi.org/10.1016/j.soilbio.2013.10.004
  6. Byeon, S.Y and Yun, C.W. 2016. Stand structure of actual vegetation in the natural forests and plantation area of Mt. Janggunbong, Bonghwa-Gun. Korean Journal of Environment and Ecology 30(6): 1032-1046. https://doi.org/10.13047/KJEE.2016.30.6.1032
  7. Chapman, S.K. and Koch, G.W. 2007. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant and Soil 299: 153-162. https://doi.org/10.1007/s11104-007-9372-8
  8. Chun, J., Kim, K.Y., Lee, J. and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer. BMC Microbiology 10: 101. https://doi.org/10.1186/1471-2180-10-101
  9. El Zahar Haichar, F., Marol, C., Berge, O., Rangel-Castro, J.I., Prosser, J.I., Balesdent, J., Heulin, T. and Achouak, W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal 2(12): 1221-1230. https://doi.org/10.1038/ismej.2008.80
  10. Fierer, N., Bradford, M.A. and Jackson, R.B. 2007. Toward an ecological classification of soil bacteria. Ecology 88(6): 1354-1364. https://doi.org/10.1890/05-1839
  11. Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103(3): 626-631. https://doi.org/10.1073/pnas.0507535103
  12. Hartmann, M., Niklaus, P.A., Zimmermann, S., Schmutz, S., Kremer, J., Abarenkov, K., Lüscher, P., Widmer, F. and Frey, B. 2014. Resistance and resilience of the forest soil microbiome to logging-associated compaction. The ISME Journal 8(1): 226-244. https://doi.org/10.1038/ismej.2013.141
  13. Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Henrik Nilsson, R., Hallam, S.J. and Mohn, W.W. 2012. Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. The ISME Journal 6(12): 2199-2218. https://doi.org/10.1038/ismej.2012.84
  14. Hur, M., Kim, Y., Song, H.R., Kim, J.M., Choi, Y.I. and Yi, H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Applied and Environmental Microbiology 77(21): 7611-7619. https://doi.org/10.1128/AEM.06102-11
  15. Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72(3): 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  16. Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and l-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecular Plant Microbe Interactions 19(3): 250-256. https://doi.org/10.1094/MPMI-19-0250
  17. Kim, B., Kim, J.N., Yoon, S., Chun, J. and Cerniglia, C.E. 2012a. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18(3): 310-320. https://doi.org/10.1016/j.anaerobe.2012.01.003
  18. Kim, O., Cho, Y., Lee, K., Yoon, S., Kim, M., Na, H., Park, S., Jeon, Y.S., Lee, J. and Yi, H. 2012b. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62(3): 716-721. https://doi.org/10.1099/ijs.0.038075-0
  19. Korea Forest Research Institute. 2014. Soil tests and plant analysis. Korea Forest Research Institute, Seoul, Korea.
  20. Korea Forestry Service (KFS). 2016. Statistical yearbook of forestry. Korea Forest Service, Seoul, Korea. pp. 418.
  21. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
  22. Lareen, A., Burton, F. and Schäfer, P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology 90(6): 575-587. https://doi.org/10.1007/s11103-015-0417-8
  23. Lauber, C.L., Hamady, M., Knight, R. and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75(15): 5111-5120. https://doi.org/10.1128/AEM.00335-09
  24. Lee, J. and Hong, S. 2004. Community types and population structures of Pinus densiflora forest around the Bulyeongsa valley in Uljin-gun Southeastern Korea. Journal of Korean Forestry Society 93(1): 59-66
  25. Lee-Cruz, L., Edwards, D.P., Tripathi, B.M. and Adams, J.M. 2013. Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Applied and Environmental Microbiology 79(23): 7290-7297. https://doi.org/10.1128/AEM.02541-13
  26. Li, H., Ye, D., Wang, X., Settles, M.L., Wang, J., Hao, Z., Zhou, L., Dong, P., Jiang, Y. and Ma, Z.S. 2014. Soil bacterial communities of different natural forest types in Northeast China. Plant and Soil 383: 203-216. https://doi.org/10.1007/s11104-014-2165-y
  27. Lyashevska, O. and Farnsworth, K.D. 2012. How many dimensions of biodiversity do we need? Ecological Indicators 18: 485-492. https://doi.org/10.1016/j.ecolind.2011.12.016
  28. Micallef, S.A., Shiaris, M.P. and Colon-Carmona, A. 2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Journal of Experimental Botany 60(6): 1729-1742. https://doi.org/10.1093/jxb/erp053
  29. Oh, Y.M., Kim, M., Lee-Cruz, L., Lai-Hoe, A., Go, R., Ainuddin, N., Rahim, R.A., Shukor, N. and Adams, J.M. 2012. Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microbial Ecology 64(4): 1018-1027. https://doi.org/10.1007/s00248-012-0082-2
  30. Paillet, Y., Berges, L., Hjalten, J., Odor, P., Avon, C., Bernhardt-Romermann, M., Bijlsma, R., De Bruyn, L., Fuhr, M. and Grandin, U. 2010. Biodiversity differences between managed and unmanaged forests: Meta‐analysis of species richness in Europe. Conservation Biology 24(1): 101-112. https://doi.org/10.1111/j.1523-1739.2009.01399.x
  31. Palleroni, N.J. 1997. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek 72(1): 3-19. https://doi.org/10.1023/A:1000394109961
  32. Panke-Buisse, K., Poole, A.C., Goodrich, J.K., Ley, R.E. and Kao-Kniffin, J. 2015. Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal 9(4): 980-989. https://doi.org/10.1038/ismej.2014.196
  33. Park, C.Y., Lee, S.K., Kim, J.H., Lee, S.Y. and Lee, J.K. 2012. Effect of soil environment on diversity and population of aerobic soil bacteria from Baekdudaegan mountain forests in Gyeongsangbuk-do, Korea. Journal of Korean Forest Society 101(3): 501-508.
  34. Park, N., Lee, K. and Jung, S. 2009. Estimation of site productivity of Pinus densiflora by the soil physicochemical properties. Korean Journal of Soil Science and Fertilizer 42(3): 160-166.
  35. Prasanna, S.N. 2007. Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Applied Ecology and Environmental Research 5(2): 103-113.
  36. Rousk,J., Brookes,P. C. and Baath,E. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75(6): 1589-1596. https://doi.org/10.1128/AEM.02775-08
  37. Shamseldin, A., Abdelkhalek, A. and Sadowsky, M.J. 2016. Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: A review. Symbiosis 71(2): 91-109.
  38. Shi, C., Wang, C., Xu, X., Huang, B., Wu, L. and Yang, D. 2015. Comparison of bacterial communities in soil between nematode-infected and nematode-uninfected Pinus massoniana pinewood forest. Applied Soil Ecology 85: 11-20. https://doi.org/10.1016/j.apsoil.2014.08.008
  39. Sprent, J.I. 2001. Nodulation in legumes. John Wiley and Sons. Oxford, United Kingdom. pp. 200.
  40. Ste-Marie, C. and Pare, D. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology and Biochemistry 31(11): 1579-1589. https://doi.org/10.1016/S0038-0717(99)00086-3
  41. Stursova, M., Zifcakova, L., Leigh, M.B., Burgess, R. and Baldrian, P. 2012. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiology Ecology 80(3): 735-746. https://doi.org/10.1111/j.1574-6941.2012.01343.x
  42. Tanaka, M. and Nara, K. 2009. Phylogenetic diversity of non-nodulating Rhizobium associated with pine ectomycorrhizae. FEMS Microbiology Ecology 69(3): 329-343. https://doi.org/10.1111/j.1574-6941.2009.00720.x
  43. Uroz, S., Buee, M., Murat, C., Frey‐Klett, P. and Martin, F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports 2(2): 281-288. https://doi.org/10.1111/j.1758-2229.2009.00117.x
  44. Van Der Heijden, M.G., Bardgett, R.D. and Van Straalen, N.M. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11(3): 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  45. Winarno, R. and Lie, T. 1979. Competition between Rhizobium strains in nodule formation: Interaction between nodulating and non-nodulating strains. Plant and Soil 51(1): 135-142. https://doi.org/10.1007/BF02205933