DOI QR코드

DOI QR Code

Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands

소나무 유령림의 임목밀도 조절이 탄소 동태에 미치는 영향

  • Song, Su-Jin (Department of Forestry, Chonnam National University) ;
  • Jang, Kyoung-Soo (Department of Forestry, Chonnam National University) ;
  • Hwang, In-Chae (Department of Forestry, Chonnam National University) ;
  • An, Ki-Wan (Department of Forestry, Chonnam National University) ;
  • Lee, Kye-Han (Department of Forestry, Chonnam National University)
  • Received : 2016.03.30
  • Accepted : 2016.06.27
  • Published : 2016.09.30

Abstract

The objective of this study was to examine carbon dynamics with biomass, soil $CO_2$ efflux, litter and root decomposition after tree density control in young Pinus densiflora stands. The stands were established with 50% thinning, clear-cut, and control stands with three pseudo-replicated plots and a bare soil plot in 8-year-old Pinus densiflora nursery field. Monthly measurements were conducted from March 2012 to February 2014 and aboveground biomass and coarse-roots were estimated by derived allometric equations. Average diameter growth at root collar in control and thinned was 0.89 cm and 1.48 cm per year, respectively, and the diameter growth of control stand was significantly higher than that of thinned stands (p<0.05). Total biomass was estimated to 5.17, $4.85kg\;C\;m^{-2}$ per year in control and thinned, respectively. Annual soil $CO_2$ efflux in control, thinned, clear cut, and bare soil was 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$, respectively and removing trees significantly increased soil $CO_2$ efflux (p<0.05). Net Ecosystem Production (NEP) was 1.57, 1.36, -0.67, $-1.25kg\;C\;m^{-2}\;yr^{-1}$ in control, thinned, clear cut and bare soil in the young Pinus densiflora stands. NEP was significantly decreased by removing trees. Thinning increased diameter at root collar and carbon of individual tree and recovered 86% of carbon removed by thinning after one-year. In addition, soil $CO_2$ efflux increased and NEP increased by thinning. Results of this study, tree density control such as thinning increased the carbon storage and growth of the young Pinus densiflora stands.

본 연구는 소나무림의 간벌에 따른 임분의 바이오매스 변화, 토양 $CO_2$ 발생량, 낙엽 및 뿌리의 분해율을 조사하여 연간 탄소 동태를 파악하고자 수행되었다. 8년생 소나무 묘포장에 대조구, 간벌지(50%), 개벌지를 각 3 방형구씩 조성하였고, 나지는 한 방형구를 조성하였다. 측정은 2012년 3월부터 2014년 2월까지 이뤄졌다. 연평균 근원직경 증가는 대조구 0.89 cm, 간벌지 1.48 cm로 대조구보다 간벌지에서 컸다(p<0.05). 연평균 순생산량은 대조구 $5.17kg\;C\;m^{-2}\;yr^{-1}$, 간벌지 $4.85kg\;C\;m^{-2}\;yr^{-1}$로 나타났다. 연간 토양 $CO_2$ 발생량은 대조구, 간벌지, 개벌지, 나지에서 각각 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$으로 식생의 제거는 토양 $CO_2$ 발생을 증가시켰다(P<0.05). 토양 $CO_2$ 발생은 토양온도와 양의 상관관계가 있으나 토양수분과는 뚜렷한 관계가 나타나지 않았다. 순생태계생산량(NEP)은 대조구 $1.57kg\;C\;m^{-2}\;yr^{-1}$, 간벌지 $1.36kg\;C\;m^{-2}\;yr^{-1}$, 개벌지 $-0.67kg\;C\;m^{-2}\;yr^{-1}$, 나지 $-1.25kg\;C\;m^{-2}\;yr^{-1}$으로, 식생 유무에 따른 차이를 나타냈다(P<0.05). 간벌은 임분 내 개체목의 근원직경과 탄소량을 증가시켰고, 1년 후 간벌재로 반출 된 탄소량의 86%를 회복했다. 또한 토양 $CO_2$ 발생량을 증가시켰고, 순생태계생산량을 증가시켰다. 소규모의 연구임에도 불구하고, 본 연구의 결과는 간벌에 의한 임분 밀도 조절이 소나무 유령림의 탄소저장량 증대와 생장에 있어 효과적임을 보여 주었다. 이는 우리나라에서 기후변화 완화를 위한 적극적인 소나무림의 경영이 필요함을 시사한다. 추후 실제 소나무림에서 영급별, 간벌 강도별, 지위별 등 다양한 변수를 고려한 장기적 연구가 수행되어야 할 것이다.

Keywords

References

  1. Alban, D.H. and Perala, D. 1992. Carbon storage in lake states aspen ecosystems. Canadian Journal of Forest Research 22: 1107-1110. https://doi.org/10.1139/x92-146
  2. Bond-Lamberty, B., Wang, C., and Gower, S.T. 2004. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiology 24: 1387-1395. https://doi.org/10.1093/treephys/24.12.1387
  3. Brinson, M.M., Lugo, A.E., and Brown, S. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12: 123-161. https://doi.org/10.1146/annurev.es.12.110181.001011
  4. Buchmann, N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32: 1625-1635. https://doi.org/10.1016/S0038-0717(00)00077-8
  5. Chapman, S.B. 1979. Some interrelationships between soil and root respiration in lowland Calluna heathland in southern England. The Journal of Ecology 67: 1-20. https://doi.org/10.2307/2259333
  6. David, A.L., Elizabeth, A.B., Mackenzie, B.M., Mark, E.B., Mebecca, M.N. and Richard, B.H. 2016. Tradeoffs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo. Ecological Applications 26(1): 146-161. https://doi.org/10.1890/14-2207
  7. Ellert, B.H. and Gregorich, E.G. 1995. Management-induced changes in the actively cycling fraction of soil organic matter. In: Mcfee, W. and Kelly, J.M. (Eds.), Carbon Forms and Functions in Forest Soil. Soil Science Society American, Madison, WI. pp. 119-138.
  8. Fang, C., Moncrieff, J.B., Gholz, H.L., and Clark, K.L. 1998. Soil $CO_2$ efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil 205: 135-146. https://doi.org/10.1023/A:1004304309827
  9. Hanson, P.J., Edwards, N.T., Garten, C.T., and Andrews, J.A. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  10. Kim, C. 2008. Soil $CO_2$ efflux in clear-cut and uncut red pine (Pinus densiflora S. et Z.) stands in Korea. Forest ecology and management 255: 3318-3321. https://doi.org/10.1016/j.foreco.2008.02.012
  11. Kim, C., Son, Y., Lee, W.K., Jeong, J., and Noh, N.J. 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257: 1420-1426. https://doi.org/10.1016/j.foreco.2008.12.015
  12. Kim, M.I., Lee, W.K., Park, T.J., Kwak, H.B., Byun, J.Y., Nam, K.J., Lee, K.H., Son, Y.M., Won, H.K., and Lee, S.M. 2012. Developing dynamic DBH growth prediction model by thinning intensity and cycle -Based on yield table data-. Journal of Korean Forest Society 101(2): 266-278.
  13. Kim, Y.H., Kim, T.W., Won, H.K., Lee, K.H., and Shin, M.Y. 2012. Estimation of timber production by thinning scenarios using a forest stand yield model. Journal of Korean Forest Society 101(4): 592-598.
  14. Kimble, J.M., Heath, L.S., Birdsey, R.A., and Lal, R. 2003. The potential of U.S. forest soils to sequester carbon and mitigate the green house effect. CRC Press, New York. pp. 429.
  15. Ko, S.I., Yoon, T.K., Kim, S.J., Kim, C.S, Lee, S.T., Seo, K.W., and Son, Y.W. 2014. Thinning intensity effects on carbon storage of soil, forest floor and coarse woody debris in Pinus densiflora stands. Journal of Korean Forest Society 103(1): 30-36. https://doi.org/10.14578/jkfs.2014.103.1.30
  16. Kominami, Y., Jomura, M., Dannoura, M., Goto, Y., Tamai, K., Miyama, T., Kanazawa, Y., Kaneko, S., Okumura, M., and Misawa, N. 2008. Biometric and eddy-covariancebased estimates of carbon balance for a warm-temperate mixed forest in Japan. agricultural and forest meteorology 148: 723-737. https://doi.org/10.1016/j.agrformet.2008.01.017
  17. Koo, C.D., Ka, K.H., Park, W.C., Park, H. Ryu, S.R., Park, Y.W., and Kim, T.H. 2007. Changes of leaf area index, Physiological activities and soil water in Tricholoma matsutake producing pine forest ecosystem. Journal of Korean Forest Society 96(4): 438-447.
  18. Kwon, K.C. and Lee, D.K. 2006. Biomass and energy content of Pinus rigida stand in Gwangju, Gyeonggi province. Journal Korean Forest Energy 25(1): 39-45.
  19. Lee, J.Y., Han, S.H., Kim, S.J., Lee, S.H., Son, Y.M., and Son, Y.W. 2015. A meta-analysis on the effect of forest thinning on diameter growth and carbon stocks in Korea. Journal of Korean Forest Society 104(4): 527-535. https://doi.org/10.14578/jkfs.2015.104.4.527
  20. Lee, K.J. and Mun, H.T. 2010. A study on the soil respiration in cutting and uncutting areas of Larix leptolepis plantation. Journal of Life Science 20: 1353-1357. https://doi.org/10.5352/JLS.2010.20.9.1353
  21. Lee, K.J., Won, H.Y., and Mun, H.T. 2012 Contribution of root respiration to soil respiration for Quercus acutissima forest. Korean Journal of Ecology and Environment 26(5): 780-786.
  22. Lee, M. 2003. Method for assessing forest carbon sinks by ecological process-based approach. Korean Journal of Ecology and Environment 26: 289-296. https://doi.org/10.5141/JEFB.2003.26.5.289
  23. Lee, Y.Y. and Mun, H.T. 2001. A study on the soil respiration in a Quercus acutissima forest. Journal of Ecology and Environment 24(3): 141-147.
  24. Litton, C.M., Ryan, M.G., and Knight, D.H. 2004. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecological applications 14: 460-475. https://doi.org/10.1890/02-5291
  25. Liu, Q., Edwards, N.T., Post, W.M., Gu, L., Ledford, J., and Lenhart, S. 2006. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology 12: 2136-2145. https://doi.org/10.1111/j.1365-2486.2006.01245.x
  26. Lu, F. and Gong, P. 2005. Adaptive thinning strategies for mixedspecies stand management with stochastic prices. Journal of Forest Economics 11(1): 53-71. https://doi.org/10.1016/j.jfe.2005.02.003
  27. Macdonald, N.W., Zak, D.R., and Pregitzer, K.S. 1995. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Science Society of America Journal 59: 233-240. https://doi.org/10.2136/sssaj1995.03615995005900010036x
  28. Mun, H.T. 2009. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. Journal of Ecology and Environment 32: 123-127. https://doi.org/10.5141/JEFB.2009.32.2.123
  29. Na, S.J., Woo, K.S., Kim, C.S., Yoon, J.H., Lee, H.H., and Lee, D.H. 2010. Comparison of above-ground growth characteristics between naturally regenerated and planted stands of Pinus densiflora for. erecta Uyeki in Gangwon province. Journal of Korean Forest Society 99(3): 323-330.
  30. Namgung, J., Han, A.R., and Mun, H.T. 2008. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park. Journal of Ecology and Environment 31(4): 291-295. https://doi.org/10.5141/JEFB.2008.31.4.291
  31. Nishizono, T. 2010. Effect of thinning level and site productivity on age-related changes in stand volume growth can be explained by a single rescaled growth curve. Forest Ecology and Management 259(12): 2276-2291. https://doi.org/10.1016/j.foreco.2010.03.002
  32. Noh, N.J., Son, Y., Lee, S.K., Yoon, T.K., Seo, K.W., Kim, C., Lee, W.K., Bae, S.W., and Hwang, J. 2010. Influence of stand density on soil $CO_2$ efflux for a Pinus densiflora forest in Korea. Journal of Plant Research 123: 411-419. https://doi.org/10.1007/s10265-010-0331-8
  33. Powers, M., Kolka. R., Palik, B., McDonald, R., and Jurgensen, M. 2011. Long-term management impacts on carbon storage in Lake States forests. Forest Ecology and Management 262: 424-431. https://doi.org/10.1016/j.foreco.2011.04.008
  34. Pregitzer, K.S. 2003. Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal(ed.) The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. pp. 93-107.
  35. Prescott, C. 1997. Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. Forest Ecology and Management 95: 253-260. https://doi.org/10.1016/S0378-1127(97)00027-3
  36. Raich, J.W. and Nadelhoffer, K.J. 1989. Belowground Carbon Allocation in Forest Ecosystems: Global Trends. Ecology 70: 1346-1354. https://doi.org/10.2307/1938194
  37. Ronald, L.H. and Kurt, S.P. 1992. The demography of fine roots in a Northern hardwood forest. Ecology 73: 1094-1104. https://doi.org/10.2307/1940183
  38. Schimel, D.S., Braswell, B., Mckeown, R., Ojima, D., Parton, W., and Pulliam, W. 1996. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycles 10: 677-692. https://doi.org/10.1029/96GB01524
  39. Seo, Y.O., Lee, Y.J., Pyo, J.K., Kim, R.H., Son, Y.M., and Lee, K.H. 2010. Above-and belowground biomass and net primary production for Pinus densiflora stands of Cheongyang and Boryeong regions in Chungnam. Journal of Korean Forest Society 99(6): 914-921.
  40. Son, Y., Jun, Y.C., Lee, Y.Y., Kim, R.H., and Yang, S.Y. 2004. Soil carbon dioxide evolution, litter decomposition, and nitrogen availability four years after thinning in a Japanese larch plantation. Communications in Soil Science and Plant Analysis 35: 1111-1122. https://doi.org/10.1081/CSS-120030593
  41. Tamai, K. 2009. Experimental estimation of the effect of rainfall interception on soil respiration in a broad-leaved deciduous forest in Western Japan. Korean Journal of Agricultural and Forest Meteorology 11(4): 247-251. https://doi.org/10.5532/KJAFM.2009.11.4.247
  42. Thorpe, H., Thomas, S. and Caspersen, J. 2007. Residual-tree growth responses to partial stand harvest in the black spruce (Picea mariana) boreal forest. Canadian Journal of Forest Research 37: 1563-1571. https://doi.org/10.1139/X07-148
  43. Vitousek, P.M. 1991. Can planted forests counteract increasing atmospheric carbon dioxide? Journal of Environmental Quality 20: 348-354.
  44. Wiseman, P.E. and Seiler, J.R. 2004. Soil $CO_2$ efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. Forest Ecology and Management 192: 297-311. https://doi.org/10.1016/j.foreco.2004.01.017
  45. Zhou, D., Zhao, S.Q., Liu, S., and Oeding, J. 2013. A metaanalysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 10(6): 3691-3703. https://doi.org/10.5194/bg-10-3691-2013