본 연구는 반도체 제조 공정중 발생하는 센서 데이터를 활용하여 딥러닝기반으로 불량을 예측하는 모델을 제안한다. 반도체 공장에서는 FDC((Fault Detection and Classification)라는 불량을 예측하는 시스템이 있지만, 공정의 복잡도가 높고 센서의 종류가 많아 공정 관리자가 모든 센서의 기준을 설정 및 관리하는데 한계가 있다. 이를 해결하기 위해 공정 설비의 센서 데이터를 딥러닝을 활용하여 학습시켜 센서 기준정보로 임계치를 제공하고, 가공중 발생하는 센서 데이터가 입력되면 정상 여부를 판정하는 모델을 제안한다.
ICT 기술의 발전에 따라 제조 산업은 공정 상에서 생성되는 제조 데이터를 분석하여 효율을 높이고자 많은 노력을 하고 있다. 본 논문에서는 스마트 공장의 일환으로 의사결정나무 알고리즘(CHAID)을 이용한 데이터 마이닝 기반 제조공정을 제안한다. 약 5개월간 수집된 실제 제조 공정의 432개 센서 데이터를 활용하여 불량률이 낮은 안정적인 공정 기간과 불량률이 높은 불안정한 공정 기간 간에 유의미한 차이를 보이는 변수를 찾아냈다. 선정된 최종 변수가 불량률 개선에 실제로 효과가 있는지를 측정하기 위해 해당 변수의 안정 값 범위를 설정하여 14일 간 공정에서 해당 센서가 안정 값의 범위를 벗어나지 않도록 공정 설정 값을 조절했고, 불량률 개선의 효과를 측정하였다. 이를 통해 제조 산업에서 생성되는 공정 센서 데이터를 활용 및 분석하여 불량률을 개선할 수 있는 실증적인 가이드라인을 제시할 수 있을 것으로 기대한다.
본 논문에서는 현재 사용되어지고 있는 고분자 습도센서의 내수성 특성 결함현상을 파악하고, 불량의 원인규명을 목적으로 한다. 또한, 유추된 불량의 원인에 대한 진행과정을 구현하고자 불량시료와 개선된 고분자습도센서를 제작하여 불량시편과 개선시편에 대해 고온고습($60^{\circ}C/95%$) 시험조건을 기준으로 하여 모의시험을 행하였다. 그 결과를 통해 내수성 결함 및 그에 대한 원인을 파악 하였고, 결함 메커니즘을 제시하였다.
The test was done on cars travelling at speeds of 20km/h, 60km/h and 100km/h, the performance testing mode for chassis dynamometer. In this test, the secondary waveform were measured, including those using faulty MAP sensors, oxygen sensors and spark plugs. The results from these measurements and their analysis of secondary waveform can be summarized as follows: 1) The secondary waveform measured from the faulty oxygen sensor showed a lot of noise around peak voltage and in the rising and falling sections during spark line which means that the air fuel mixture was non-homogeneous. 2) The secondary waveform from the faulty MAP sensor showed the worst shape compared to other sensors, including variation of spark line, state of air-fuel mixture and velocity of flame front. 3) The spark line time of secondary waveform using a faulty spark plug displayed the shortest and smallest energy spark line, which means that a misfire occurred.
현재 고해상도 디스플레이 제품 생산은 대량 생산 공정 시스템으로 가동하고 있으며, 대량 생산 과정에서 WAFER의 제작 불량률을 낮추는 것이 생산업체에서 무엇보다도 주요한 목표이며 이와 함께 불량 제품을 정확하고 빠르게 검출하는 것이 매우 중요하다. 본 논문에서는 불량 WAFER을 정확하게 검출하기 위한 검출시스템으로 멀티 포인트 온도 검출 방법으로 구현된 면적형 온도 센서 기능과 검출된 데이터를 유/무선 통신방식으로 상위의 관리/모니터링 시스템으로 전송 할 수 있는 기능을 가진 마스터 콘트롤러 시스템을 제안한다.
LCD의 생산이 많아짐에 따라 LCD의 불량 검출이 중요해 지고 있다. 불랑 검사는 눈으로 확인할 수 있는 범위에서 검사가 이루어지고 있으며, 만약 눈으로 식별이 불가능한 경우 적외선 카메라나 초음파 센서를 사용하여 검사가 이루어진다. 본 논문에서는 카메라를 이용하여 LCD 패널의 표면에 있는 불량 검출을 위하여 각 Dot에 대한 R, G, B 값을 추출한 후, 추출된 픽셀을 제안된 알고리즘에 적용하여 불량을 검출하는 것을 목적으로 하고 있다.
본 논문에서는 회전체의 특징 파라미터들을 추출하기 위한 센서의 신호들을 수집하여 추출기법의 성능을 분석하고자 한다. 이를 위해, 모형 시험을 수행하기 위한 진동 테스트 리그를 개발하여 정상적으로 운전하에서의 신호특성을 분석하였다. 그 결과, 가속도 센서에서 측정한 불평형 질량에 따른 가속도 센서에서 측정된 원 데이터 진폭의 변화는 나타나지 않는 것으로 판단된다. FFT를 수행하여 불평형량이 증가함에 따라 회전 주파수인 20Hz의 진폭이 크게 증가하는 것을 알 수 있었다. 속도 센서의 불평형량 변화에 따른 분석결과도 가속도 센서와 같이 1X 하모닉 성분이 크게 증가하였다.정렬불량의 변화시 가속도 센서 데이터에는 특별한 진폭의 변화가 없었으며, Envelope 데이터의 경우 2X(40Hz)의 진폭이 정렬불량의 정도에 따라 증가되었다. 정렬불량의 변화시 속도 센서도 가속도 센서와 유사한 결과를 보였으며 주파수 스펙트럼에서 부하의 증가에 따라 600Hz에서 피크가 감소되었다.
본 연구는 최근 가공 불량 예측 방법으로 주목받고 있는 머신러닝 기반의 모델을 이용하여 CNC 가공 불량 발생의 실시간 예측을 위한 분석 프레임워크를 제안하고, 해당 프레임워크에 기반하여 XGBoost, CatBoost, LightGBM, 랜덤 포레스트, Extra Trees, SVM, k-최근접 이웃, 로지스틱 회귀 모델을 CNC 설비에 기본 내장된 센서들로부터 추출된 데이터에 적용 및 분석하였다. 분석 결과 XGBoost, CatBoost, LightGBM 모델이 동일하게 가장 우수한 정확도, 정밀도, 재현율, F1 점수, AUC 값을 보였으며, 이 중 LightGBM 모델이 소요 실행 시간이 가장 짧은 것으로 나타났다. 이러한 짧은 소요 실행 시간은 실 시스템 구축 비용 절감, 빠른 불량 예측에 따른 CNC 장비 파손 확률 감소, 전체적인 CNC 활용률 증가 등의 실무적 장점을 가지므로 LightGBM 모델이 기본 센서들만 설치된 CNC 설비에 적용 시 가공 불량 예측에 가장 효과적으로 판단된다. 또한 소요 실행 시간 및 컴퓨팅 파워의 제약이 없는 상황에서는 LightGBM, Extra Trees, k-최근접 이웃, 로지스틱 회귀 모형으로 구성된 앙상블 모델을 적용할 경우 분류 성능이 최대화됨을 확인하였다.
CMOS 이미지 센서는 모바일 디바이스, 특히 스마트 폰에 내장된 카메라에 가장 광범위하게 사용된다. 이러한 이미지 센서의 정상 동작을 검사하기 위해서는 불량화소 검출과 같은 테스트가 수행되어야 하며, 테스트를 위해서는 센서에 의해서 캡처된 이미지를 대상으로 이미지 처리를 할 수 있는 함수제공이 필수적이다. 이 논문에서는 CMOS 이미지 센서의 동작을 효율적이고 엄격하게 판단할 수 있는 자동 검사 시스템을 구축하고 이미지 센서로부터 캡처되는 이미지 데이터에 대해서 목적에 맞는 테스트를 수행 할 수 있도록 이미지 처리 함수를 구현하고 실험하였다.
본 논문에서는 이미지 센서에서 불량 화소를 자동으로 검출하기 위한 알고리듬을 제안하고, 그에 따른 하드웨어 구조를 제시하였다. 기존에 제안된 방법은 영상의 특징을 고려하지 않고 단순히 주위 화소들 값과의 차이가 일정 이상이면 불량 화소로 간주하였다. 그러나 이러한 방식은 영상에 따라서 불량 화소가 아닌 화소를 불량 화소로 간주하거나, 불량 화소를 정상 화소로 판단하는 일이 발생한다. 이러한 단점을 보완하기 위해 여러 프레임에 걸쳐 확인하는 방법도 제안되었으나, 불량 화소 검출시간이 오래 걸리는 단점이 있다. 이러한 기존 방식의 단점을 해결하기 위해, 제안된 불량 화소 검출 기법은 단일화면 내에서는 경계 영역을 고려하여 불량 화소를 검출하고, 여러 프레임에 걸친 확인 과정을 거치되, 화면 전환 여부를 확인하여 화면 전환이 일어날 때마다 검출된 화소의 불량 화소 여부를 판단하고 확인한다. 실험 결과, 단일 화면 내에서의 검출률은 기존 대비 6% 향상되었고, 100%의 불량화소 검출까지 걸리는 시간은 평균적으로 3배 이상 단축되었다. 본 논문에서 제안된 알고리듬은 하드웨어로 구현되었고, 하드웨어 구현 시 색 보간 블록에서 사용되는 경계 영역 표시자를 그대로 활용함으로써 0.25um 표준 셀 라이브러리를 이용하여 합성했을 때, 5.4K gate의 낮은 복잡도로 구현할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.