• Title/Summary/Keyword: 세포생장관련 유전자 발현

Search Result 14, Processing Time 0.032 seconds

Molecular Analysis of the Border Cell Differentiation in Root Cap of Pisum sativum L. (완두(Pisum sativum L.) 근관의 생장과 관련된 표피세포의 분화와 유전자 발현)

  • 우호영;장매희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.169-173
    • /
    • 1995
  • Border cells are differentiated cells which originate from meristematic cells in The root cap. Experimentally border cells can be released from the root cap by a physical treatment, for example dipping the root tip in the waters After 20-25 hours of release, the new border cell layer forms in the root cap. During the border cell differentiation, new gene expressions were observed in the root cap of pea which was determined by mRNA differential display These new gene expressions may be involved in the border cell differentiation Border cells had unique gene expressions which were determined by mRNA differential display, This suggests that border cells are differentiated cells which are different from the other tissues (ie., leaves, stems, roots or root caps).

  • PDF

The Promotion of Cell Attachment and Proliferation on Silk Fibroin (실크 생체막에 대한 세포 부착 및 세포 증식)

  • Jo, You-Young;Kweon, Hae-Yong;Lee, Kwang-Gill;Nam, Sung-Hee;Lee, Heui-Sam;Yeo, Joo-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.166-170
    • /
    • 2011
  • Silk fibroin, a natural protein produced by silkworm, is a good biomaterial which has biodegradability and biocompatibility. To ascertain the effects of silk fibroin on cell growth, silk fibroin films were prepared using silk fibroin aqueous solutions of various concentrations. We investigated the attachment, proliferation, morphology of the cells and the expression levels of genes related to cell attachment and growth on the silk fibroin films. When the cells were cultured on the 0.1 and 1% silk fibroin film, the cell adhesion ability was very excellent. Particularly, overall cell growth on the 1% silk fibroin film was definitely superior to the others. Also, expression levels of genes related cell growth were increased on the 0.1 and 1% silk fibroin film. These results suggest silk as a material for medical applications.

Over-expression of NSAID Activated Gene-1 by Caffeic Acid Phenethyl Ester (Caffeic acid phenethyl ester의 처리에 의한 NSAID activated gene-1의 과대발현)

  • Jang, Min-Jeong;Kim, Hyo-Eun;Son, Seong-Min;Kim, Min-Jeong;Seo, Eul-Won;Kim, Young-Ho;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1787-1793
    • /
    • 2009
  • To investigate whether caffeic acid phenethyl ester (CAPE) could affect cancer cell viabilities and gene expression, human colorectal HCT116 cells were incubated with CAPE. CAPE decreased cancer cell viabilities and induced apoptosis in a dose-dependent manner. To analyse differently expressed genes by CAPE, we performed oligo DNA microarray analysis. We found that 266 genes were up-regulated more than twofold, whereas 143 genes were down-regulated more than twofold by 24 hr of treatment with $20{\mu}M$ CAPE. Among the up-regulated genes, we selected 3 genes (NSAID activated gene-1 [NAG-1], cyclin-dependent kinase inhibitor 1A [CDKN1A, p21] and growth arrest and DNA-damage-inducible alpha [GADD45A]) and performed reverse-transcription PCR to confirm microarray data. In addition, we found that CAPE increased NAG-1 gene and NAG-1 protein expression in a dose-dependent manner. And, several other phytochemicals (resveratrol, genistein, daidzein and capsaicin) also could induce NAG-1 expression in human colorectal HCT116 cells. However, CAPE was the highest inducer of NAG-1, even in low concentrations. Overall, these results imply that cancer cell death by CAPE is closely related with over-expression of NAG-1.

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size (배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Seung-Bum;Yoon, Hye-Jin;Lee, Yeon-Hee
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.378-386
    • /
    • 2018
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

Effects of bis(2-ethylhexyl) phthalate(DEHP) on plant soil-borne pathogenic bacterium Pectobacterium carotovorum in vitro (Bis(2-ethylhexyl) phthalate가 in vitro에서 식물 토양병원성 세균 Pectobacterium carotovorum에 미치는 영향)

  • Yu-Ri Kim;Sang Tae Kim;Mee Kyung Sang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.398-404
    • /
    • 2022
  • Bis(2-ethylhexyl) phthalate (DEHP) is one of the plasticizers used in the polyvinyl chloride(PVC) industry. It is known to be easily released into the environment. In this study, we investigated effects of DEHP on growth, metabolic pathway, and virulence gene expression in soil-borne bacterial plant pathogen, Pectobacterium carotovorum SCC1 using in vitro assays. As a result, DEHP at 20 ㎍ mL-1 did not affect the growth, cell membrane permeability, or ATPase activity of P. carotovorum SCC1. However, it decreased succinyl-CoA synthase (SCS) activity in the tricarboxylic acid (TCA) cycle. Relative expression levels of virulence genes encoding pectate lyase and pectin were differentially influenced by DEHP treatment. These results suggest that biological characteristics of P. carotovorum might be influenced by DEHP in soil.

In vitro Propagation of Transgenic Ginsengs Introduced with Ferritin Light Heavy Chain Gene through Single Embryo Culture (Ferritin Light Heavy Chain 유전자가 도입된 인삼형질전환체의 단일배발생을 통한 식물체의 기내증식)

  • 윤영상;김종학;김무성;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2004
  • Optimal regeneration conditions of ginseng transformants were studied. It has been known that Ferritin Light Heavy Chain (FLHC) gene remove the several heavy metal by combination, store and transport. To obtain the ginseng tolerant to heavy metal, binary vector was introduced in Agrobacterium by tri-parental mating and then Agrobacterium tumefaciens MP90/FLHC was selected on the AB media and MS media containing kanamycin. Explants were co-cultured with Agrobacterium tumefaciens MP90/FLHC, which contained NPT II as a selectable marker, tadpole ferritin heavy chain (FLHC) gene and human ferritin light chain gene and then a number of embryos were induced. The induced embryo transferred to shooting media consisting of MS medium supplemented with GA 10 mg/L. As a result of examination that induced the normal growth of transfomants, transformants showed the equivalent growth in both root and shoot on the media containing the 1/3 MS.

Effects of Light Quality Using LEDs on Expression Patterns in Brassica rapa Seedlings (LED 광원의 다양한 광질이 배추 유묘의 유전자 발현에 미치는 영향)

  • Kim, Jin A;Lee, Yeon-Hee;Hong, Joon Ki;Hong, Sung-Chang;Lee, Soo In;Choi, Su Gil;Moon, Yi-Seul;Koo, Bon-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.607-616
    • /
    • 2013
  • Light with two faces, beneficial and harmful effects is an important signal for every living cell. Optimal adaptation to light environment enhances the fitness of an organism and survival in nature. Understandings of light quality and plant growth provide with the economical guides for artificial light sources like LEDs. Compared with those under white light, the 1 week seedlings of Chinese cabbage (Brassica rapa) under monochromic red and blue light showed normal development and growth. In contrast to extremely long and etiolated hypocotyls of the seedlings under dark, those under far-red etiolated were extremely short. Based on the microarray analysis, blue light induced the vigorous development and growth and two fold changes of transcripts than red light condition. To have insight of gene products under different light qualities conditions, GO term enrichments were calculated and each gene according to their GO terms were categorized. The blue and red lights affected the expressions of genes related to biological process. Especially, the genes related to metabolic process and developmental process and plastid and chloroplast in the cellular component category were induced under blue light. This study provided the molecular biological evidence for various light qualities on the growing process of B. rapa.

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis (배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.114-123
    • /
    • 2015
  • Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.

Isolation and Characterization of a Wound or UV Induced cDNA Fragment from Pleurotus sajor-caju (상처 및 자외선 자극에 반응하는 여름느타리 cDNA 단편의 분리 및 그 발현 특성)

  • Park, Soo-Chul;Jung, Uk-Jin;Jeong, Mi-Jeong;Kim, Bum-Gi;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.314-320
    • /
    • 1998
  • A 0.4 kb cDNA fragment was isolated from mRNA of UV or mechanical wound damaged Pleurotus sajor-caju by the differential display method. Expression of the gene corresponding to this cDNA fragment was highly induced by mechanical wound damage or UV treatment. This gene showed only basal level expression in mycelia, stipe, and cap under normal growth conditions. Sequencing analysis showed that this cDNA fragment contains partial open reading frame. Homology search using genbank database revealed that although this gene do not have homology with already reported wound induced genes, it has a significant sequence homology in defined region with the cdc2-related protein kinase gene which is known to be involved in negative regulation of meiotic maturation in Xenopus oocytes.

  • PDF

Characterization of T-DNA Insertional Mutant of Formaldehyde-Responsive Protein1 (T-DNA 삽입에 의한 Formaldehyde-Responsive Protein1 기능파괴 돌연변이체의 특성연구)

  • Seo, Jae-Hyun;Woo, Su-Young;Kim, Wook;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • Formaldehyde responsive protein(FRP) 1 belongs to the family of universal stress protein(USP) and is known to respond to stress caused by fumigation of gaseous volatile organic compounds(VOCs) such as formaldehyde and toluene. However, the molecular function of this protein is not well understood at cellular and molecular level. In this study, loss of function mutant of FRP1 generated by T-DNA insertion(frp1-4) has been isolated from Arabidopsis thaliana and the function of FRP1 was characterized. The loss-of-function mutant of FRP1 appeared slight growth defects with shorter stem and rosette leaves compared to wild type. In addition, the damage caused by exogenous VOCs was more severe in frp1-4 than in control. Therefore, Arabidopsis FRP1 seems to be the protein involved not only in the growth and development of plant but also the stress resistance against toxic volatile organic compounds.