References
- Baek, S. J., J. S. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908
- Baek S. L. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-I) by increasing the expression of p53. Carcinogenesis 23, 425-434 https://doi.org/10.1093/carcin/23.3.425
- Baek, S. J., R. Okazaki, S. H. Lee, J. Martinez, J. S. Kim, K. Yamaguchi, Y. Mishina, D. W. Martin, A. Shoieb, M. F. McEntee, and T. E. Eling. 2006. Nonsteroidal anti-inflammatory drug-activated gene-lover expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560 https://doi.org/10.1053/j.gastro.2006.09.015
- Chen, Y. J., M. S. Shiao, and S. Y. Wang. 2001. The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 12, 143-149 https://doi.org/10.1097/00001813-200102000-00008
- Chen, M. J., W. H. Chang, C. C. Lin, C. Y. Liu, T. E. Wang, C. H. Chu, S. C. Shih, and Y. J. Chen. 2008. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 8, 566-576 https://doi.org/10.1159/000159843
- Corn, P. G. and W. S. El-Deiry. 2007. Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer BioI. Ther. 6, 1858-1866 https://doi.org/10.4161/cbt.6.12.5330
- Fesen, M. R., Y. Pommier, F. Leteurtre, S. Hiroguchi, J. Yung, and K. W. Kohn. 1994. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol. 48, 595-608 https://doi.org/10.1016/0006-2952(94)90291-7
- Foo, E., E. Bullier, M. Goussot, F. Foucher, C. Rameau, and C. A. Beverideg. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464-474 https://doi.org/10.1105/tpc.104.026716
- He, Y. J., B. H. Liu, D. B. Xiang, Z. Y. Qiao, T. Fu, and Y. H. He. 2006. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW 480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World J. Gastroenterol. 12, 4981-4985
- Jacobs, D. R Jr, L. Marquart, J. Slavin, and L. H. Kushi. 1998. Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr. Cancer 30, 85-96 https://doi.org/10.1080/01635589809514647
- Jin, U. H., K. H. Song, M. Motomura, I. Suzuki, Y. H. Gu, Y. J. Kang, T. C. Moon, and C. H. Kim. 2008. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Mol. Cell Biochem. 310, 43-48 https://doi.org/10.1007/s11010-007-9663-7
- Jung, W. K., I. Choi, D. Y. Lee, S. S. Yea, Y. H. Choi, M. M. Kim, S. G. Park, S. K. Seo, S. W. Lee, C. M. Lee, Y. M. Park, and I. W. Choi. 2008. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kappaB pathways. Int. J. Biochem. Cell BioI. 40, 2572-2582 https://doi.org/10.1016/j.biocel.2008.05.005
- Kuo, H. C., W. H. Kuo, Y. J. Lee, W. L. Lin, F. P. Chou, and T. H Tseng. 2006. Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett. 234, 199-208 https://doi.org/10.1016/j.canlet.2005.03.046
- Lampe, J. W. and J. L. Chang. 2007. Interindividual differences in phytochemical metabolism and disposition. Semin. Cancer BioI. 17, 347-353 https://doi.org/10.1016/j.semcancer.2007.05.003
- Lee, K. W., N. J. Kang, J. H Kim, K. M. Lee, D. E. Lee, H. J. Hur, and H. J. Lee. 2008. Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B. Genes Nutr. 2, 319-322 https://doi.org/10.1007/s12263-007-0067-9
- Maekawa, T, Y. Sano, T. Shinagawa, Z. Rahman, T. Sakuma, S. Nomura, J. D. Licht, and S. Ishii. 2008. ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene 27, 1045-1054 https://doi.org/10.1038/sj.onc.1210727
- Michaluart, P, J. L. Masferrer, A. M. Carothers, K. Subbaramaiah, B. S. Zweife, C. C. Koboldt, J. R. Mestre, D. Grunberger, P. G. Sacks, T. Tanabe, and A. J. Dannenberg. 1999. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 59, 2347-2352
- Rahman, K. W., Y. Li, Z. Wang, S. H Sarkar, and F. H. Sarkar. 2006. Gene expression profiling revealed survivin as a target of 3,3' -diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res. 66, 4952-4960 https://doi.org/10.1158/0008-5472.CAN-05-3918
- Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470 https://doi.org/10.1126/science.270.5235.467
- Sun, S. Y, N. Hail Jr, and R Lotan. 2004. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662-672 https://doi.org/10.1093/jnci/djh123
- Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780 https://doi.org/10.1038/nrc1189
- Takahashi, Y, J. A. Lavigne, S. D. Hursting, G. V. Chandramouli, S. N. Perkins, J. C. Barrett, and T. T. Wang. 2004. Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol. Carcinog. 41, 108-119 https://doi.org/10.1002/mc.20045
- Wang, D, D. B. Xiang, Y J. He, Z. P. Li, X. H Wu, J. H. Mou, H. L. Xiao, and Q. H. Zhang. 2005. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J. Gastroenterol. 11, 4008-4012
- Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753 https://doi.org/10.1002/ijc.11173
- Xiang, D., D. Wang, Y. He, J. Xie, Z. Zhong, Z. Li, and J. Xie. 2006. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 17, 753-762 https://doi.org/10.1097/01.cad.0000224441.01082.bb
Cited by
- Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) vol.22, pp.4, 2012, https://doi.org/10.5352/JLS.2012.22.4.492
- Up-Regulation of NAG-1 and p21 Genes by Sulforaphane vol.22, pp.3, 2012, https://doi.org/10.5352/JLS.2012.22.3.360
- Anti-Proliferative Activities of Solid-State Fermented Medicinal Herbs Using Phellinus baumii against Human Colorectal HCT116 Cell vol.20, pp.8, 2010, https://doi.org/10.5352/JLS.2010.20.8.1268
- Effects of Genistein on Cell Proliferation and Adipogenesis in Mouse 3T3-L1 Preadipocytes vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.49