DOI QR코드

DOI QR Code

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size

배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향

  • Hong, Joon Ki (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Suh, Eun Jung (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Seung-Bum (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yoon, Hye-Jin (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yeon-Hee (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration)
  • 홍준기 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서은정 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이승범 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤혜진 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이연희 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2018.07.31
  • Accepted : 2018.08.24
  • Published : 2018.12.01

Abstract

GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

GROWTH-REGULATING FACTOR (GRF) 유전자는 QLQ와 WRC 도메인을 갖고 있는 식물 특이적 전사조절인자로 식물기관들의 생장과 발달에 중요한 역할을 하고 있다. 배추로부터 분리된 BrGRF3-1과 BrGRF9 유전자를 각각 35S 프로모터에 결합시켜 두 종류의 식물 형질전환 벡터를 제작한 후 아그로박테리움을 이용하여 유채에 형질전환하였다. 선발된 형질전환체의 특성을 분석한 결과 세포 크기 보다는 세포 수 증가에 의해 자엽, 잎, 종자의 크기가 커지는 것으로 나타났다. RT-PCR로 유전자 발현을 분석한 결과 BrGRF3-1과 BrGRF9 유전자는 기관 생장 발달에 관여하는 지베렐린(GA), 옥신(auxin), 세포분열 관련 유전자들의 발현을 조절함으로써 유채 기관의 생장과 발달에 중요한 역할을 하는 것으로 추측된다. 따라서 본 연구결과로 BrGRF 유전자는 생명공학기술을 활용하여 작물의 농업적 형질을 개선하기 위한 유전자원으로 이용될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 국립농업과학원

References

  1. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA. 2001. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582. https://doi.org/10.1046/j.1365-313x.2001.01055.x
  2. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2: 15195. https://doi.org/10.1038/nplants.2015.195
  3. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2: 15203. https://doi.org/10.1038/nplants.2015.203
  4. Fleet CM, Sun TP. 2005. A DELLAcate balance: the role of gibberellins in plant morphogenesis. Curr Opin Plant Biol 8: 77-85. https://doi.org/10.1016/j.pbi.2004.11.015
  5. Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster GT, Inze D. 2010. Increased leaf size: different means to an end. Plant Physiol 153: 1261-1279. https://doi.org/10.1104/pp.110.156018
  6. Gonzalez N, Beemster G, Inze D. 2009. David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 12: 157-164. https://doi.org/10.1016/j.pbi.2008.11.003
  7. Hong JK, Kim JS, Kim JA, Lee SI, Lim MH, Park BS, Lee YH. 2010. Identification and characterization of SHI family genes from Brassica rapa L. ssp. pekinensis. Genes Genom 32: 309-317. https://doi.org/10.1007/s13258-010-0011-z
  8. Hong JK, Kim S-Y, Kim K-S, Kwon S-J, Kim JS, Kim JA, Lee SI, Lee Y-H. 2013. Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus. Plant Biotechnol Rep 7: 231-237. https://doi.org/10.1007/s11816-012-0254-z
  9. Hong JK, Oh S-W, Kim JH, Lee SB, Suh EJ, Lee Y-H. 2017. Overexpression of Brassica rapa GROWTH-REGULATING FACTOR genes in Arabidopsis thaliana increases organ growth by enhancing cell proliferation. J Plant Biotech 44: 271-286. https://doi.org/10.5010/JPB.2017.44.3.271
  10. Horiguchi G, Kim GT, Tsukaya H. 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43: 68-78. https://doi.org/10.1111/j.1365-313X.2005.02429.x
  11. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q. 2015. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8: 1455-1465. https://doi.org/10.1016/j.molp.2015.07.002
  12. Kim JH, Choi D, Kende H. 2003. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36: 94-104. https://doi.org/10.1046/j.1365-313X.2003.01862.x
  13. Kim JH, Kende H. 2004. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101: 13374-13379. https://doi.org/10.1073/pnas.0405450101
  14. Kim JH, Lee BH. 2006. GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol 49: 463-468. https://doi.org/10.1007/BF03031127
  15. Kim JH, Tsukaya H. 2015. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66: 6093-6107. https://doi.org/10.1093/jxb/erv349
  16. Krizek BA. 2009. Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12: 17-22. https://doi.org/10.1016/j.pbi.2008.09.006
  17. Lee BH, Ko J-H, Lee S, Lee Y, Pak J-H, Kim JH. 2009. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol 151: 655-668. https://doi.org/10.1104/pp.109.141838
  18. Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL. 2005. Arabidopsis $H^+$-PPase AVP1 regulates auxin-mediated organ development. Science 310: 121-125. https://doi.org/10.1126/science.1115711
  19. Li LC, Kang DM, Chen ZL, Qu LJ. 2007. Hormonal regulation of leaf morphogenesis in Arabidopsis. J Integr Plant Biol 49: 75-80. https://doi.org/10.1111/j.1744-7909.2006.00410.x
  20. Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Ping Li. 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotech J 14: 2134-2145. https://doi.org/10.1111/pbi.12569
  21. Li Y, Zheng L, Corke F, Smith C, Bevan MW. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22: 1331-1336. https://doi.org/10.1101/gad.463608
  22. Liang G, He H, Li Y, Wang F, Yu D. 2014. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164: 249-258. https://doi.org/10.1104/pp.113.225144
  23. Liang YC, Jeon Y-A, Lim S-H, Kim JK, Lee J-Y, Kim Y-M, Lee Y-H, Ha S-H. 2011. Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. Plant Cell Rep 30: 973-980. https://doi.org/10.1007/s00299-010-0999-1
  24. Liu D, Song Y, Chen Z, Yu D. 2009. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plantarum 136: 223-236. https://doi.org/10.1111/j.1399-3054.2009.01229.x
  25. Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ. 2012. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63: 3727-3740. https://doi.org/10.1093/jxb/ers066
  26. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  27. Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. 2015. Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8: 998-1010. https://doi.org/10.1016/j.molp.2015.01.013
  28. Perrot-Rechenmann C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2: a001446.
  29. Van der Knaap E, Kim JH, Kende H. 2000. A novel gibberellin induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122: 695-704. https://doi.org/10.1104/pp.122.3.695
  30. Wang F, Qiu N, Ding Q, Li J, Zhang Y, Li H, Gao J. 2014. Genome-wide identification and analysis of the growthregulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 15: 807. https://doi.org/10.1186/1471-2164-15-807
  31. Yao K, Lockhart KM, Kalanack JJ. 2005. Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds. Plant Physiol Biochem 43: 83-89. https://doi.org/10.1016/j.plaphy.2004.12.006
  32. Ye R, Yao QH, Xu ZH, Xue HW. 2004. Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development. Plant J 38: 348-357. https://doi.org/10.1111/j.1365-313X.2004.02037.x
  33. Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC. 2008. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci 175: 809-817. https://doi.org/10.1016/j.plantsci.2008.08.002