• Title/Summary/Keyword: 세정메카니즘

Search Result 5, Processing Time 0.017 seconds

Surface Cleaning of a Wafer Contaminated by Fingerprint Using a Laser Cleaning Technology (레이저 세정기술을 이용한 웨이퍼의 표면세정)

  • Lee, Myong-Hwa;Baek, Ji-Young;Song, Jae-Dong;Kim, Sang-Bum;Kim, Gyung-Soo
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.185-190
    • /
    • 2007
  • There is a growing interest to develop a new cleaning technology to overcome the disadvantages of wet cleaning technologies such as environmental pollution and the cleaning difficulty of contaminants on integrated circuits. Laser cleaning is a potential technology to remove various pollutants on a wafer surface. However, there is no fundamental data about cleaning efficiencies and cleaning mechanisms of contaminants on a wafer surface using a laser cleaning technology. Therefore, the cleaning characteristics of a wafer surface using an excimer laser were investigated in this study. Fingerprint consisting of inorganic and organic materials was chosen as a representative of pollutants and the effectiveness of a laser irradiation on a wafer cleaning has been investigated qualitatively and quantitatively. The results have shown that cleaning degree is proportional to the laser irradiation time and repetition rate, and quantitative analysis conducted by an image processing method also have shown the same trend. Furthermore, the cleaning efficiency of a wafer contaminated by fingerprint strongly depended on a photothermal cleaning mechanism and the species were removed in order of hydrophilic and hydrophobic contaminants by laser irradiation.

  • PDF

Enhanced Removal of Benzene-NAPL in Soil using Concurrent Injection of Cosolvent and Air (Cosolvent와 공기 동시 주입 공정에 의한 토양 내 벤젠-NAPL 세정 증대 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1095-1101
    • /
    • 2008
  • Nonaqueous phase liquids (NAPL) are the continuous source for soil and groundwater contamination. The first objective of the study was to verify the effect of co-injection of cosolvent and air on NAPL removal from soil-column system. The second objective of the study was to investigate the effect of alcohol-partitioning property on the NAPL removal by the co-injection process of cosolvent and air. Enhanced removal of benzene-NAPL by the co-injection process of ethanol and air was also verified within the soilcolumn system. However, the co-injection process of Tert-butanol (TBA) and air showed no enhancement of benzene-NAPL removal. This study found that the viscous pressure of TBA was so higher than the capillary pressure and TBA easily displaced the benzene-NAPL and air present in soil pores. Air of the coinjection process did not work for NAPL removal but hindered NAPL mobilization. NAPL partitioning property and viscous pressure of cosovlent should be considered for application of the co-injection process of cosolvent and air.

Weathering Impact for Rock Properties and Material Characteristics of Concretes Used Stone Pagoda of the Mireuksaji Temple Site, Iksan, Korea (익산 미륵사지 석탑에 사용된 콘크리트의 재료학적 특성과 석재의 풍화에 미치는 영향)

  • Lee Dong-Sik;Lee Chan-Hee;Kim Ji-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.285-299
    • /
    • 2006
  • The Mireuksaji stone pagoda in Iksan is the largest stone pagoda existing in Eastern Asia. It was assumed that originally it had been established in the shape of nine-storied pagoda but as time went by only six-storied pagoda remained partially due to collapsing, repair and reconstruction. According to the reference, we can't make sure when its modification happened. The form that the pagoda is having now, was modified with concrete by the Japanese during the 1910s. The materials mixed in concrete were mixture of Portland cement, all sorts of stone, sand, and a little bit of new building stone, additive and compound. And also these materials were applied to cultural assets without any experiment at the time of 1910s as maintenance, which are still used recently. To prevent the change of its shape, the west side, south side and the north side which is partially destructed was rebuilt and reinforced with concrete and some of the deformed parts were also filled. The amounts of concrete used were about 200 tons. Such method had prevented the pagoda from destructing, however, by choosing a wrong repair method, its surface of the stone has secondary contaminants and precipitation caused by concrete. This kind of contamination speeds up the weathering which accelerates the aging mechanism of the stone to make it even harder to revive the absence of historical nature. Therefore, we are to find the best cleaning method to remove the secondary hazard contaminants.

Cell Differentiation and Ultrastructure of the Seminiferous Epithelium in Myotis macrodactylus (큰발웃수염박쥐 (Myotis macrodactylus)의 정상피세포의 분화와 미세구조)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • Cell differentiation and ultrastructural characteristics in the seminiferous epithelium of Myotis macrodactylus was investigated with the light and electron microscopes. Spermatogenesis has begun at April and finished at September. The nuclei of A spermatogonia (dark and pale type of spermatogonia) were oval, applied to the basal lamina, and surrounded by Sertoli cells. By comparison with other types of spermatogonia, the cell and nucleus of B type of spermatogonium is globular and larger than A types of spermatogonia. The nucleolus appears as a coarse and touches the nuclear membrane. The cell and nucleus of spermatocytes was globular and larger, but primary spematocyte is larger than secondary spermatocyte. Spermiogenesis was divided according to the level of fine structural difference, into Golgi, cap, acrosomal, maturation and spermiation phases; Golgi, cap, acrosomal and spermiation phases were further subdivided into steps of early and late phase respectively, and maturation phase has only one step. Hence, the spermiogenesis has been divided into a total of nine phases. In the change of karyoplasm, the chromatin granules are condensed at late Golgi phase and completed at spermiation phase. The sperm tail began to develop in early Golgi phase and completed in spermiation phase. The process of degeneration of spermatogenic cells in the seminiferous tubules was continually observed from October, before the beginning of hibernation, to hibernation phase (November, December, January, February, March). Immatured spermatogenic cells in the seminiferous tubules have been engulfed by phagocytosis of Sertoli cells during period of degeneration. It is deduced that the adaptative strategy serves as the mechanism to regulate the effective use of energy to prepare for long hibernation and regulation of breeding cycle.