• Title/Summary/Keyword: 세라믹 소재

Search Result 615, Processing Time 0.027 seconds

다공성 세라믹소재의 단열 효과 및 단열소재 연구 현황

  • Song, In-Hyeok;Park, Yeong-Jo;Yun, Hui-Suk;Hwang, Gi-Yeong;Choe, Sang-Gyu
    • 기계와재료
    • /
    • v.22 no.4
    • /
    • pp.6-20
    • /
    • 2010
  • 현재 우리나라는 에너지 소비량의 97% 이상을 해외에 의존하고 있으며, 그 규모가 매년 증가하고 있는 실정이다. 이를 해소하기 위하여 다양한 시도가 이루어지고 있으며 이에 따른 관련 연구 분야의 정부 정책 지원도 증가하는 추세이다. 그러나 새로운 차세대 단열 소재의 개발을 통한 에너지 절감에 대한 노력은 아직 미흡한 상태이다. 본고에서는 이와 관련하여 에너지 효율 극대화 방안으로써, 기존의 단열 소재의 현황 및 향후 단열 소재의 연구방향을 다공질 세라믹(특히 에어로겔)을 중심으로 정리 기술함으로써 앞으로의 발전방향을 제시하고자 한다. 또한 이를 통하여 전체적인 다공성 무기질 단열 소재에 대한 이해를 높여 향후 친환경적이며, 에너지 효율적인 단열소재 연구 분야를 확립하는데 기여하고자 한다.

  • PDF

Effect of Silica Particle Size and Aging Time on the Improvement of Mechanical Properties of Geopolymer-Fiber Composites (실리카의 입자 크기와 Aging 시간이 지오폴리머 섬유 복합체의 기계적 물성 향상에 미치는 효과)

  • Yoonjoo Lee;Seokhun Jang;Minkyeong Oh;Dong-Gen Shin;Doo Hyun Choi;Jieun Lee;Chang-Bin Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.175-183
    • /
    • 2024
  • Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.

Research Trends of the Dielectric Materials and the Characterization Using Free Space Method in Millimeter Wave Range (밀리미터파 대역용 유전체 소재와 자유공간법에 의한 특성평가기술 연구개발 동향)

  • Jun, B.H.;Hahn, J.W.;Kim, D.Y;Lee, S.S.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.5 s.59
    • /
    • pp.28-33
    • /
    • 1999
  • 최근 정보사회에 따른 전파수요가 높아지고 있으며 이에 따른 주파수의 요구가 점차 고주파화되고 있고 미개척분야인 밀리미터파의 개발이 중요한 과제로 대두되고 있다. 본 고에서는 밀리미터파 대역 수동부품용 세라믹 유전체 소재에 관한 동향을 서술하였으며, 이 대역에서 세라믹 소재의 유전특성을 측정, 평가하는 여러 방법 중에서 자유공간법을 이용한 기술에 관하여 소개하고자 한다.

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals (상부종자 용액 성장에 있어 성장결정상 잔류액적의 영향)

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Yoo, Yong-Jae;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.

Effect of Radiation Heat Transfer on the Control of Temperature Gradient in the Induction Heating Furnace for Growing Single Crystals (전자기 유도가열식 단결정 성장로의 온도 구배제어에 있어 복사열 전달의 효과)

  • Park, Tae-Yong;Shin, Yun-Ji;Ha, Minh-Tan;Bae, Si-Young;Lim, Young-Soo;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.522-527
    • /
    • 2019
  • In order to fabricate high-quality SiC substrates for power electronic devices, various single crystal growing methods were prepared. These include the physical vapor transport (PVT) and top seeded solution growth (TSSG) methods. All the suggested SiC growth methods generally use induction-heating furnaces. The temperature distribution in this system can be easily adjusted by changing the hot-zone design. Moreover, precise temperature control in the induction-heating furnace is favorably required to grow a high-quality crystal. Therefore, in this study, we analyzed the heat transfer in these furnaces to grow SiC crystals. As the growth temperature of SiC crystals is very high, we evaluated the effect of radiation heat transfer on the temperature distribution in induction-heating furnaces. Based on our simulation results, a heat transfer strategy that controls the radiation heat transfer was suggested to obtain the optimal temperature distribution in the PVT and TSSG methods.

Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application (전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가)

  • Na, Yong-hyeon;Lee, Min-seon;Cho, Jeong-ho;Paik, Jong-hoo;Lee, Jung Woo;Park, Youngjun;Jeong, Young Hun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.106-112
    • /
    • 2019
  • Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania (전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성)

  • Cho, Hae-Ran;Choi, Byung-Hyun;An, Yong-Tae;Baeck, Sung-Hyeon;Roh, Kwang-Chul;Park, Sun-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

Characterizations of Microscopic Defect Distribution on (-201) Ga2O3 Single Crystal Substrates ((-201)면 산화갈륨 단결정 기판 미세 결함 분석)

  • Choi, Mee-Hi;Shin, Yun-Ji;Cho, Seong-Ho;Jeong, Woon-Hyeon;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.504-508
    • /
    • 2022
  • Single crystal gallium oxide (Ga2O3) has been an emerging material for power semiconductor applications. However, the defect distribution of Ga2O3 substrates needs to be carefully characterized to improve crystal quality during crystal growth. We analyzed the type and the distribution of defects on commercial (-201) Ga2O3 substrates to get a basic standard prior to growing Ga2O3 crystals. Etch pit technique was employed to expose the type of defects on the Ga2O3 substrates. Synchrotron white beam X-ray topography was also utilized to observe the defect distribution by a nondestructive manner. We expect that the observation of defect distribution with three-dimensional geometry will also be useful for other crystal planes of Ga2O3 single crystals.