DOI QR코드

DOI QR Code

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals

상부종자 용액 성장에 있어 성장결정상 잔류액적의 영향

  • Ha, Minh-Tan (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Yun-Ji (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yoo, Yong-Jae (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Energy Efficient Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 하민탄 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 신윤지 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 배시영 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 유용재 (한국세라믹기술원 에너지환경본부 에너지효율소재센터) ;
  • 정성민 (한국세라믹기술원 에너지환경본부 에너지효율소재센터)
  • Received : 2019.09.24
  • Accepted : 2019.10.05
  • Published : 2019.11.01

Abstract

The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.

Keywords

References

  1. Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978). [DOI: https://doi.org/10.1016/0022-0248(78)90169-0]
  2. E. Jung, Y. Kim, Y. J. Kwon, C. Y. Lee, M. H. Lee, W. J. Lee, D. J. Choi, and S. M. Jeong, Ceram. Int., 44, 22632 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.09.039]
  3. O. Kordina, C. Hallin, A. Ellison, A. S. Bakin, I. G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, and E. Janzen, Appl. Phys. Lett., 69, 1456 (1996). [DOI: https://doi.org/10.1063/1.117613]
  4. D. H. Nam, B. G. Kim, J. Y. Yoon, M. H. Lee, W. S. Seo, S. M. Jeong, C. W. Yang, and W. J. Lee, Cryst. Growth Des., 14, 5569 (2014). [DOI: https://doi.org/10.1021/cg5008186]
  5. D. H. Hofmann and M. H. Muller, Mater. Sci. Eng., B, 61, 29 (1999). [DOI: https://doi.org/10.1016/S0921-5107(98)00440-1]
  6. T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda, and Y. Takeda, J. Cryst. Growth, 310, 1438 (2008). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.210]
  7. M. T. Ha, Y. J. Yu, Y. J. Shin, S. Y. Bae, M. H. Lee, C. J. Kim, and S. M. Jeong, RSC Adv., 9, 26327 (2019). [DOI: https://doi.org/10.1039/C9RA04930D]
  8. Y. J. Yu, D. S. Byeon, Y. J. Shin, S. H. Choi, M. H. Lee, W. J. Lee, and S. M. Jeong, Cryst. Eng. Comm., 19, 6731 (2017). [DOI: https://doi.org/10.1039/C7CE01641G]
  9. M. T. Ha, Y. J. Shin, M. H. Lee, C. J. Kim, and S. M. Jeong, Phys. Status Solidi A, 215, 1701017 (2018). [DOI: https://doi.org/10.1002/pssa.201701017]
  10. P. Yue, C. Zhou, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu, J. Comput. Phys., 219, 47 (2006). [DOI: https://doi.org/10.1016/j.jcp.2006.03.016]
  11. A. Novick-Cohen and L. A. Segel, Phys. D, 10, 277 (1984). [DOI: https://doi.org/10.1016/0167-2789(84)90180-5]
  12. A. Cartalade, A. Younsi, E. Regnier, and S. Schuller, Procedia Mater. Sci., 7, 72 (2014). [DOI: https://doi.org/10.1016/j.mspro.2014.10.010]
  13. P. G. Drazin and N. Riley, The Navier- Stokes Equations: A Classification of Flows and Exact Solutions (Cambridge University Press, Cambridge, 2006). p. 45.
  14. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 28, 258 (1958). [DOI: https://doi.org/10.1063/1.1744102]
  15. C. M. Elliott and Z. Songmu, Arch. Ration. Mech. Anal., 96, 339 (1986). [DOI: https://doi.org/10.1007/BF00251803]
  16. F. Millot, V. Sarou-Kanian, J. C. Rifflet, and B. Vinet, Mater. Sci. Eng., A, 495, 8 (2008). [DOI: https://doi.org/10.1016/j.msea.2007.10.108]
  17. T. J. Whalen and A. T. Anderson, J. Am. Ceram. Soc., 58, 396 (1975). [DOI: https://doi.org/10.1111/j.1151-2916.1975.tb19006.x]
  18. W. M. Haynes, CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data (CRC Press, Boca Raton; London; New York, 2014) p. 132.
  19. D.K.L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, Carbon, 43, 2902 (2005). [DOI: https://doi.org/10.1016/j.carbon.2005.06.009]
  20. Z. Li and R. C. Bradt, J. Appl. Phys., 60, 612 (1986). [DOI: https://doi.org/10.1063/1.337456]
  21. Y. Okada and Y. Tokumaru, J. Appl. Phys., 56, 314 (1984). [DOI: https://doi.org/10.1063/1.333965]
  22. I. B. Mason and R. H. Knibbs, Carbon, 5, 493 (1967). [DOI: https://doi.org/10.1016/0008-6223(67)90026-7]
  23. K. E. Petersen, Proc. IEEE, 70, 420 (1982). [DOI: https://doi.org/10.1109/PROC.1982.12331]
  24. P. Hess, Appl. Surf. Sci., 106, 429 (1996). [DOI: https://doi.org/10.1016/S0169-4332(96)00369-8]
  25. C. L. Burdick and E. A. Owen, J. Am. Chem. Soc., 40, 1749 (1918). [DOI: https://doi.org/10.1021/ja02245a001]
  26. P. E. Tomaszewski, Phase Transit., 38, 127 (1992). [DOI: https://doi.org/10.1080/01411599208222899]