DOI QR코드

DOI QR Code

Effect of Silica Particle Size and Aging Time on the Improvement of Mechanical Properties of Geopolymer-Fiber Composites

실리카의 입자 크기와 Aging 시간이 지오폴리머 섬유 복합체의 기계적 물성 향상에 미치는 효과

  • Yoonjoo Lee (Semiconductor Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Seokhun Jang (Semiconductor Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Minkyeong Oh (Semiconductor Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Dong-Gen Shin (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Doo Hyun Choi (Materials & Energy Technology Center, Agency for Defense Development) ;
  • Jieun Lee (Materials & Energy Technology Center, Agency for Defense Development) ;
  • Chang-Bin Oh (Materials & Energy Technology Center, Agency for Defense Development)
  • 이윤주 (한국세라믹기술원 반도체소재센터) ;
  • 장석훈 (한국세라믹기술원 반도체소재센터) ;
  • 오민경 (한국세라믹기술원 반도체소재센터) ;
  • 신동근 (한국세라믹기술원 우주항공융복합소재센터) ;
  • 최두현 (국방과학연구소 소재에너지센터) ;
  • 이지은 (국방과학연구소 소재에너지센터) ;
  • 오창빈 (국방과학연구소 소재에너지센터)
  • Received : 2023.12.12
  • Accepted : 2024.03.05
  • Published : 2024.03.27

Abstract

Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.

Keywords

Acknowledgement

This research was supported by the Agency for Defense Development (Grant no. 912822501) funded by the government (Defense Acquisition Program Administration) in 2021-2023.

References

  1. W. M. Kriven, Am. Ceram. Soc. Bull., 89, 31 (2010). 
  2. D. Dimas, I. Giannopoulou and D. Panias, J. Mater. Sci., 44, 3719 (2009). 
  3. N. Elmesalami and K. Celik, Constr. Build. Mater., 346, 128491 (2022). 
  4. F. Farooq, X. Jin, M. F. Javed, A. Akbar, M. I. Shah, F. Aslam and R. Alyousef, Constr. Build. Mater., 306, 124762 (2021). 
  5. J. Sarazin, C. A. Davy, S. Bourbigot, G. Tricot, J. Hosdez, D. Lambertin and G. Fontaine, Composites, Part B, 222, 109045 (2021). 
  6. J. Davidovits and M. Davidovics, in Proceedings of the 36th International SAMPE Symposium (San Diego, CA, USA, 1991). p.1939. 
  7. J. Davidovits and M. Davidovics, in Proceedings of the 12th Annual Conference on Composites and Advanced Ceramic Materials (Hoboken, NJ, USA, 1988). ed. J. B. Wachtman (John Wiley & Sons, Inc.) p.835. 
  8. J. Davidovits, Reinforced Geopolymer Composites: A critical review, Materials Today on the Web. Retrived May 31, 2016 from https://www.materialstoday.com/polymers-soft-materials/features/reinforced-geopolymer-composites-a-critical-review/. 
  9. J. Mills-Brown, K. Potter, S. Foster and T. Batho, Ceram. Int., 39, 8917 (2013). 
  10. J. Beaudet, J. Cormier, A. Dragon, M. Rollin and G. Benoit, Mater. Sci. Appl., 2, 1399 (2011). 
  11. P. R. Jackson, T. A. Parthasarathy, A. Ross and D. W. Radford, Ceram. Int., 45, 5139 (2019). 
  12. W. M. Kriven, Comprehensive Composite Materials II, Vol. 5, pp. 269-280, Academic Press, Oxford (2018). 
  13. N. K. Yierlapalli, D. K. Boda and S. B. L. Patiswara, Mater. Today: Proc. (2023) - in press (DOI: 10.1016/j.matpr.2023.07.213). 
  14. M. Lahoti, K. H. Tan and E. H. Yang, Constr. Build. Mater., 221, 514 (2019). 
  15. A. A. Arslan, M. Uysal and A. Yilmaz, Constr. Build. Mater., 225, 909 (2019). 
  16. S. Samal, Cem. Concr. Compos., 128, 104420 (2022). 
  17. P. Sukontasukkul, P. Chindaprasirt, P. Pongsopha, T. Phoo-Ngernkham, W. Tangchirapat and N. Banthia, J. Sustainable Cem.-Based Mater., 9, 218-232 (2020). 
  18. J. Davidovits, in Proceedings of the First International Conference on Alkaline Cements and Concretes (Kiev, Ukraine, 1994). ed. P. V. Krivenko (VIPOL Stock Company) p. 131-149. 
  19. P. Duxson, S. W. Mallicoat, G. C. Lukey, W. M. Kriven and J. S. J. Van Deventer, Colloids Surf., A, 292, 8-20 (2007). 
  20. N. Ranjbar, C. Kuenzel, J. Spangenberg and M. Mehrali, Cem. Concr. Compos., 114, 103729 (2020). 
  21. K. Wojciechowska, Clay Miner., 54, 111 (2019). 
  22. J. Osswald and K. T. Fehr, J. Mater. Sci., 41, 1335 (2006). 
  23. V. T. Farmer and J. D. Russell, Spectrochim. Acta, 20, 1149 (1964). 
  24. B. K. Singh, R. Tomar, S. Kumar, A. Jain, B. S. Tomar and V. K. Manchanda, J. Hazard. Mater., 178, 771 (2010). 
  25. E. Papa, E. Landi, F. Miccio and V. Medri, Materials, 15, 1008 (2022). 
  26. A. Hajimohammadi, J. L. Provis and J. S. van Deventer, Cem. Concr. Res., 41, 210 (2011). 
  27. W. D. Callister Jr, p.573-577, Materials Science and Engineering: An Introduction (10th), Wiley, US (2018). 
  28. M. T. A. Ansari, K. K. Singh and M. S. Azam, in Proceedings of the Trends in Materials Engineering: Select Proceedings of ICFTMM 2018 (Greater Noida, India, 2018). ed. I. Singh et al. (Springer Nature Singapore Pte Ltd. 2019) p. 51-58.