• Title/Summary/Keyword: 세균(細菌)

Search Result 6,399, Processing Time 0.031 seconds

Effect of Various LED Light Wavelengths on the Growth of Food-borne Bacteria (다양한 파장의 LED 조사가 주요 식중독 미생물의 생장에 미치는 영향)

  • Lee, Ji-Eun;Xu, Xiaotong;Jeong, So-Mi;Kim, Su-Ryong;Kim, Han-Ho;Kang, Woo-Sin;Ryu, Si-Hyeong;Lee, Ga-Hye;Ahn, Dong-Hyun
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.905-912
    • /
    • 2021
  • In this study, four common food-borne bacteria, namely, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis, were targeted via irradiation with 270 nm UV C-LED, 365 nm UV A-LED, 465~475 and 620~630 nm visible-LED, and 850 and 5,000~7,000 nm infrared-LED light. The effect on the growth of each bacterial species was investigated. In the case of 270 nm UV C-LED, all four strains showed inhibitory effects compared with the control group when irradiated for 10 or 30 min. Furthermore, when irradiated with 365 nm UV A-LED for 1 or 3 hr, B. subtilis showed 100% growth inhibition. When irradiated with 465~475 nm visible-LED for 1 hr, all four strains showed no significant difference from the control group but showed significant growth inhibition when irradiated for 3 hr. S. aureus and B. subtilis treated with 620~630 nm visible-LED; S. typhimurium and S. aureus treated with 850 nm infrared-LED; and E. coli, S. typhimurium, and S. aureus treated with 5,000~7,000 nm infrared-LED were confirmed to significantly proliferate compared with the control group. The results of this experiment show the potential of the use of various LED light sources as a food preservation and application technology by examining their effect on the inhibition and growth of food-borne bacteria and by grasping the characteristics of each wavelength.

Inhibitory activity against biological activities and antimicrobial activity against pathogenic bacteria of extracts from Hericium erinaceus (노루궁뎅이버섯 추출물의 생리활성 및 부패세균에 대한 항균효과)

  • Kim, Myung-Uk;Lee, Eun-Ho;Jung, Hee-Young;Lee, Seung-Yeol;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.173-179
    • /
    • 2019
  • The aim of this study is to investigate the biological activities of Hericium erinaceus. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of H. erinaceus extract was higher than positive control. The inhibitory activities of xanthin oxidase, ${\alpha}$-glucosidase, and hyaluronidase was measured as functional food activity, and inhibitory activities on collagenase, tyrosinase, and astringent effect as beauty food activity in water and ethanol extracts from H. erinaceus. In functional food activity, xanthin oxidase inhibitory activities at $50-200{\mu}g/mL$ phenolic concentration in ethanol extracts from H. erinaceus showed inhibitory activity in dose dependent manner. ${\alpha}$-Glucosidase inhibitory activities at $50{\mu}g/mL$ phenolic concentration showed high activity of higher than 80%. Inhibitory activities on hyaluronidase as anti-inflammation factor showed inhibition effect in dose dependent manner both in water and ethanol extracts. In beauty food activity, Inhibitory activities on collagenase at $200{\mu}g/mL$ phenolic concentration in water and ethanol extracts showed high activity to 65.09 and 58.38% dose dependently. Tyrosinase inhibitory activity in water extract showed 9.4-58.24%. Astringent activity as pore shrink effect in ethanol extracts also showed a very high activity of 18.94-100%. Antimicrobial activity on pathogenic bacteria was highly effective on Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus and Escherichia coli at 2.5 mg/mL or above. Therefore, the extracts from H. erinaceus can be used as a functional food and beauty food resources and natural antimicrobial agent on pathogenic bacteria in food.

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

Epidemiological investigation on the outbreak of foodborne and waterborne disease due to Norovirus with delayed notification (노로바이러스에 기인한 수인성·식품매개감염병 집단발생의 지연신고에 대한 역학조사)

  • Ha, Mikyung;Kim, Hyeongsu;Kim, Yong Ho;Na, Min Sun;Yu, Mi Jung
    • Journal of agricultural medicine and community health
    • /
    • v.43 no.4
    • /
    • pp.258-269
    • /
    • 2018
  • Objectives: There was an outbreak of foodborne and waterborne disease among high school students at Okcheon in June, 2018. First attack occurred June $5^{th}$ but seven days later it was notified. The purpose of this investigation was to evaluate the pathogen of outbreak and cause of delayed notification. Methods: First, we did a questionnaire survey for 61 cases and 122 controls to find what symptoms they had and whether they ate foods or drank water from June $2^{nd}$ to June $12^{th}$. Second, we investigated the environment of cafeteria and drinking water. Third, we examined specimen of cases and environment to identify bacteria or virus. Results: Attack rate of this outbreak was 7.8%. Drinking water was strongly suspected as a source of infection in questionnaire survey but we could not find the exact time of exposure. Norovirus was identified in specimen of cases (2 students), drinking water (at main building and dormitory) and cafeteria (knife, dishtowel, hand of chef) Conclusions: We decided norovirus as the pathogen of this outbreak based on the clinical features of cases with diarrhea vomiting, abdominal pain and recovery within 2 or 3 days after onset, outbreak due to drinking water and microbiologic examination, And the cause of delayed notification might be the non-existence of the nurse teacher at that time and the lack of understanding of teachers on immediate notification under the outbreak. To prevent the delayed notification, notification system about outbreak of foodborne and waterborne disease in school is needed to be improved.

Comparison of gut microbial diversity of breast-fed and formula-fed infants (모유수유와 분유수유에 따른 영아 장내 미생물 군집의 특징)

  • Kim, Kyeong Soon;Shin, Jung;Sim, JiSoo;Yeon, SuJi;Lee, Pyeong An;Chung, Moon Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.268-273
    • /
    • 2019
  • The intestinal microbiomes vary according to the factors such environment, age and diet. The purpose of this study was to compare the gut microbial diversity between Korean infants receiving breast-fed milk and formula-fed milk. We analyzed microbial communities in stool samples collected from 80 Korean infants using next generation sequencing. Phylum level analysis revealed that microbial communities in both breast-fed infants group (BIG) was dominated by Actinobacteria ($74.22{\pm}3.48%$). Interestingly, the phylum Actinobacteria was dominant in formula-fed infants group A (FIG-A) at $73.46{\pm}4.12%$, but the proportions of phylum Actinobacteria were lower in formulafed infants group B and C (FIG-B and FIG-C) at $66.52{\pm}5.80%$ and $68.88{\pm}4.33%$. The most abundant genus in the BIG, FIG-A, FIG-B, and FIG-C was Bifidobacterium, comprising $73.09{\pm}2.31%$, $72.25{\pm}4.93%$, $63.81{\pm}6.05%$, and $67.42{\pm}5.36%$ of the total bacteria. Furthermore, the dominant bifidobacterial species detected in BIG and FIG-A was Bifidobacterium longum at $68.77{\pm}6.07%$ and $66.85{\pm}4.99%$ of the total bacteria. In contrast, the proportions of B. longum of FIG-B and FIG-C were $58.94{\pm}6.20%$ and $61.86{\pm}5.31%$ of the total bacteria. FIG-A showed a community similar to BIG, which may be due to the inclusion of galactooligosaccharide, galactosyllactose, synergy-oligosaccharide, bifidooligo and improvement material of gut microbiota contained in formula-milk. We conclude that 5-Bifidus factor contained in milk powder promotes the growth of Bifidobacterium genus in the intestines.

In Vitro Quantum Dot LED to Inhibit the Growth of Major Pathogenic Fungi and Bacteria in Lettuce (Quantum Dot LED를 이용한 상추 주요 병원성 곰팡이 및 세균의 생장억제효과 기내실험)

  • Lee, Hyun-Goo;Kim, Sang-Woo;Adhikari, Mahesh;Gurung, Sun Kumar;Bazie, Setu;Kosol, San;Gwon, Byeong-Heon;Ju, Han-Jun;Ko, Young-Wook;Kim, Yong-Duk;Yoo, Yong-Whan;Park, Tae-Hee;Shin, Jung-Chul;Kim, Min-Ha;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.114-123
    • /
    • 2019
  • QD LED has an ideal light source for growing crops and can also be used to control plant pathogenic microorganisms. The mycelial growth inhibition effect of QD LED light on Rhizoctonia solani, Phytophthora drechsleri, Sclerotinia sclerotiorum, Sclerotinia minor, Botrytis cinerea, Fusarium oxysporum, Pectobacterium carotovorum, and Xanthomonas campestris were investigated. According to the results, BLUE (450 nm) light, suppressed S. sclerotiorum by 16.7% at 50 cm height from the light source, and 94.1% mycelial growth at 30 cm height. Mycelial growth of Sclerotinia minor was inhibited by 80.4% at 50 cm height and 36.3% at 50 cm height in B. cinerea. S. minor, and B. cinerea was inhibited by 100% mycelial growth at a height of 30 cm from the light source. At 15 cm height, all three pathogens (B. cinerea, S. minor, and S. sclerotiorum) was inhibited by 100%. QD RED (M1) and QD RED (M2) light suppressed mycelial growth of S. minor and B. cinerea by 100% at 30 cm and 15 cm height from the light source. For S. sclerotiorum, QD RED (M1) and QD RED (M2) showed 75.2% and 100% inhibition, respectively. Further experiment was conducted to know the suppression effect of lights after inoculating the fungal pathogens on lettuce crop. According to the results, QD RED (M2) suppressed the S. sclerotiorum by 59.9%. In addition, Blue (450 nm), QD RED (M1), and QD RED (M2) light reduce the infestation by 59.9%. In case of B. cinerea, disease reduction was found 84% by BLUE (450 nm) light. Results suggest that the growth inhibition of mycelium increases by Quantum dot LED light.

Evaluation of Disease Resistance of Rice Cultivar Developed in North Korea (북한에서 육성된 벼 품종의 병 저항성 검정)

  • Chung, Hyunjung;Kang, In Jeong;Yang, Jung-Wook;Roh, Jae-Hwan;Shim, Hyeong-Kwon;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.108-113
    • /
    • 2019
  • Almost 30% of arable lands of North Korea are covered with paddy rice. In rice cultivation of North Korea, rice blast disease is the most important fungal disease and bacterial leaf blight is the most important bacterial disease. Seven North Korean rice cultivars had been tested for the disease resistance against rice blast pathogen, Magnaporthe oryzae and bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae. The responses of seven cultivars against 17 different M. oryzae races from South Korea had been quite different. Among seven cultivars, Giljoo1ho was very resistant to all 18 different M. oryzae isolates from South Korea, nevertheless KI or KJ. Pyungdo5ho was very susceptible, it showed susceptible responses to 8 out of 10 KI races and 7 out of 8 KJ races of M. oryzae isolated in South Korea. However, the response to bacterial leaf blight was different from the response to rice blast pathogen. Gijoo1ho, Wonsan69ho, Onpo1ho, and Pyungdo15ho were susceptible to KXO42 (K1) and KXO90 (K2), respectively. Pyungdo5ho was resistant to KXO85 (K1) and KXO19 (K3), and Pyungyang21ho was resistant to K1 races. Based on these results, Giljoo1ho can be a good resource for the breeding of resistant rice cultivar against M. oryzae isolates from South Korea.

Evaluation of Composting Characteristics According to the Air Supply Change in Farm-Sized Swine Manure (농가규모 양돈분뇨 퇴비화시 공기공급량 변화에 따른 퇴비 특성 평가)

  • Lee, Sunghyoun;Jeong, Gwanghwa;Lee, Dongjun;Lee, Donghyeon;Jang, Yuna;Kwag, Junghoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.49-61
    • /
    • 2019
  • Swine manure has been recognized as a organic sources for composting and many research was conducted to efficiently utilize and treat. This study was to evaluate a feasibility for producing swine manure compost under various treatment with mixture of swine manure and saw dust. Treatments were designed as follows; non aerated composting pile(REF), aerated composting pile of $100L/m^3$(EXP1), and aerated composting pile of $150L/m^3$(EXP2). The total days of fermentation were 28 days and each samples were collected at every 7 days from starting of composting. Temperature sensors were installed under 30~40cm from the surface of composting pile. Inner temperature in composting piles of EXP1 and EXP2 was rapidly increased to $67{\sim}75^{\circ}C$ within 1~2 days. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of organic materials. While swine manure composted, moisture content, total nitrogen, EC of EXP1, EXP2 in sample at 28 days were lower than those of REF. But, pH and organic matter of EXP1, EXP2 in sample at 28 days were higher than those of REF. After finishing fermentation experiment, maturity was evaluated with germination test. Calculated germination index(GI) at REF, EXP1 and EXP2 were 23.49, 68.50 and 51.81, respectively. The values of germination index were higher at EXP1 and EXP2 which is aerated composting piles than REF which is non aerated composting pile. According to the results, composting process by aerated static pile compost had significant effect on the reduction of required period for composting. Supplying adequate amount of air to compost swine manure will greatly reduce composting period.

Characterization of quality changes of whole super sweet corn (Zea mays saccharata Sturt.) during thermal sterilization for shelf-stable products (상온유통을 위한 가열살균 중의 통 초당옥수수의 품질변화 연구)

  • Lee, Yun Ju;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study investigated the quality changes in whole super sweet corn during thermal processing to extend its shelf-life. To minimize the reduction of unique texture of whole sweet corn after the sterilization, the alcohol sanitation applied and the cold point of a whole corn ear was determined using a computer simulation. The cold point was located between the corn kernel and the cob. The microorganisms on the surface of sweet corn were reduced by more than 1 log CFU/g after alcohol sanitation, then the whole corn was treated to satisfy the degree of sterilization ($F_{121.1}=4$). The quality of sterilized sweet corn was compared with the control that was treated with steaming. The quality changes of sterilized sweet corn during storage were monitored for 9 months at $25^{\circ}C$. The hardness was maintained within 30% of its initial value. The minimum of hardness was $464.50{\pm}103.35g$ and maximum of hardness was $514.50{\pm}81.83g$. The differences in the sugar content among the samples were found, but the sugar content of corn kernel remained within 30% of the control, ranging from $28.83{\pm}1.05$ to $34.36{\pm}0.42%$. The yellowness was higher than that of control by 5%. The maximum value of yellowness was $34.36{\pm}0.42$. The general bacteria and molds and yeasts in corn kernel stored at $25^{\circ}C$ were not detected after 9 months of storage at $25^{\circ}C$. Therefore, in this study, we have demonstrated that the thermal sterilized method extends the shelf-life of whole sweet corn with minimizing its quality changes over 6 months in room temperature.

Phosphate solubilizing effect by two paraburkholderia bacteria Isolated from button mushroom medium (양송이배지로부터 분리한 두 Paraburkholderia 속 세균에 의한 인산가용화 효과)

  • Yu, Hye-Jin;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 2019
  • The present study was conducted to investigate the synergistic effects caused by single and co-inoculation of the phosphate solubilizing bacteria (PSB), Paraburkholderia phenazinium YH3 and Paraburkholderia metrosideri YH4. Phosphate solubilization was assessed by measuring the phosphorus contents for 7 days in a single and co-inoculation medium. Co-inoculation of the two strains was found to release the highest content of soluble phosphorus ($1,250{\mu}g\;mL^{-1}$) into the medium, followed by the single inoculation of P. metrosideri YH4 ($1196.59{\mu}g\;mL^{-1}$) and P. phenazinium YH3 ($994.34{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production and glucose consumption was also observed in the co-inoculation medium of the two strains. A plant growth promotion bioassay revealed that co-inoculation with the two strains enhanced the growth of romaine lettuce more than single inoculation with either of the two strains (28.5% for leaf and 16.6% for root). Although there was no significant difference between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, the synergistic effects of co-inoculation with PSB could be beneficial for crop growth.