DOI QR코드

DOI QR Code

Inhibitory activity against biological activities and antimicrobial activity against pathogenic bacteria of extracts from Hericium erinaceus

노루궁뎅이버섯 추출물의 생리활성 및 부패세균에 대한 항균효과

  • Kim, Myung-Uk (Gyeongbuk institute for marine bio-industry) ;
  • Lee, Eun-Ho (School of Food science & Biotechnology, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Cho, Young-Je (School of Food science & Biotechnology, Kyungpook National University)
  • Received : 2019.03.28
  • Accepted : 2019.05.08
  • Published : 2019.06.30

Abstract

The aim of this study is to investigate the biological activities of Hericium erinaceus. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of H. erinaceus extract was higher than positive control. The inhibitory activities of xanthin oxidase, ${\alpha}$-glucosidase, and hyaluronidase was measured as functional food activity, and inhibitory activities on collagenase, tyrosinase, and astringent effect as beauty food activity in water and ethanol extracts from H. erinaceus. In functional food activity, xanthin oxidase inhibitory activities at $50-200{\mu}g/mL$ phenolic concentration in ethanol extracts from H. erinaceus showed inhibitory activity in dose dependent manner. ${\alpha}$-Glucosidase inhibitory activities at $50{\mu}g/mL$ phenolic concentration showed high activity of higher than 80%. Inhibitory activities on hyaluronidase as anti-inflammation factor showed inhibition effect in dose dependent manner both in water and ethanol extracts. In beauty food activity, Inhibitory activities on collagenase at $200{\mu}g/mL$ phenolic concentration in water and ethanol extracts showed high activity to 65.09 and 58.38% dose dependently. Tyrosinase inhibitory activity in water extract showed 9.4-58.24%. Astringent activity as pore shrink effect in ethanol extracts also showed a very high activity of 18.94-100%. Antimicrobial activity on pathogenic bacteria was highly effective on Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus and Escherichia coli at 2.5 mg/mL or above. Therefore, the extracts from H. erinaceus can be used as a functional food and beauty food resources and natural antimicrobial agent on pathogenic bacteria in food.

노루궁뎅이버섯(Hericium erinaceum) 추출물의 총 페놀성 성분함량은 물 추출물은 $0.349{\pm}0.004mg/sample\;g$이었고, 에탄올 추출물은 $0.258{\pm}0.012mg/sample\;g$을 나타내었다. 노루궁뎅이버섯은 농도 의존적으로 DPPH 라디칼 소거활성이 있는 것으로 나타났으며, positive control로 사용한 BHA 보다 더 높은 항산화력을 나타내었다. 기능성식품활성에서 노루궁뎅이버섯 에탄올추출물은 $50-200{\mu}g/mL$ 페놀성 성분 농도구간에서 농도 의존적으로 xanthine oxidase 저해효과를 나타내었으며, ${\alpha}$-glucosidase 저해 활성은 $50{\mu}g/mL$ 페놀성 성분 농도에서 80% 이상의 높은 저해활성을 나타내었다. 항염증인자로 hyaluronidase 저해활성은 물과 에탄올 추출물 모두 농도의존적으로 저해효과를 나타내었다. 기능성 미용식품활성에서 노루궁뎅이버섯 에탄올추출물의 collagenase 저해활성은 $200{\mu}g/mL$ 페놀성 성분 농도에서 물과 에탄올 추출물에서 각각 65.09%와 58.38%의 높은 저해활성을 나타내었고, tyrosinase 저해활성을 측정한 결과, 물 추출물에서 9.4-58.24%의 농도의존적인 저해효과를 나타내었다. 또한 노루궁뎅이버섯 ethanol 추출물 $50-200{\mu}g/mL$ 페놀성 성분 농도구간에서 18.94-100%의 우수한 모공수축 효과가 확인되었다. 식품부패유발미생물에 대한 항균활성을 측정한 결과, 노루궁뎅이버섯 추출물은 2.5 mg/mL 이상의 농도에서 Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus 및 Escherichia coli에 대한 높은 항균활성을 나타내었다. 따라서 노루궁뎅이버섯은 건강기능성 식품 및 미용식품원료로 활용이 가능하며 부패균에 대한 천연방부제로 활용이 가능할 것으로 판단되었다.

Keywords

References

  1. Huang MT, Ho CT, Lee CY (1992) Phenolic compounds in food and their effects on health. ACS publisher, p.48-52, Washington, DC, USA
  2. Kim JS, Oh CH, Jeon H, Lee KS, Ma SY (2002) Immunoregulatory property of fruit-extracts of Cornus kousa Burg. Kor J Med Crop Sci 10: 327-332
  3. Kim KB, Jo BS, Park HJ, Park KT, An BJ, Ahn DH, Kim MU, Chae JW, Cho YJ (2012) Healthy functional food properties of phenolic compounds isolated from Ulmus pumilia. Kor J Food Preserv 19: 909-918 https://doi.org/10.11002/kjfp.2012.19.6.909
  4. Son CY, Beak IH, Song GY, Kang JS, Kwon KI (2009) Pharmacological effect of decursin and decursinol angelate from Angelica gigas Nakai. Yakhak Hoeji 53: 303-313
  5. Choi JH, HA TM, Kim YH, Rho YD (1996) Studies on the main factors affecting the mycelial growth of Phellinus lintenus. Kor J Mycol 24: 214-222
  6. Tsukagoshi S, Ohashi F (1974) Protein-bound polysaccharide preparation, PS-K, effective against mouse sarcoma-180 and rat ascites hepatoma AH-13 by oral use. Gann 65: 557-558
  7. Kang MG, Bolormaa Z, Lee JS, Seo GS, Lee JS (2011) Antihypertensive activity and anti-gout activity of mushroom Sarcodon aspratus. Kor J Mycol 39: 53-56 https://doi.org/10.4489/KJM.2011.39.1.053
  8. Hyun KW, Jeong SC, Lee DH, Park JS, Lee JS (2006) Isolation and characteriaztion of a noble platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides 27: 1173-1178 https://doi.org/10.1016/j.peptides.2005.10.005
  9. Shin HH, Choi HS (1998) Purification and partial characterization of a metalloprotease in Flammulina velutipes. J Micrbiol 36: 20-25
  10. Kim JH, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci Biotech Biochem 65: 356-362 https://doi.org/10.1271/bbb.65.356
  11. Kawagishi T, Shimada A, Hosokawa S, Mori H, Okamoto K, Sakamoto H, Ishiguro Y, Sakemi S, Bordner J, Kojima N, Furukawa S (1996) Erinacines E, F and G, stimulatores of verve growth factor (NGF)-synthesis, from the mycelia of Hericum erinaceus. Tetrahedron Lett 37: 7399-7402 https://doi.org/10.1016/0040-4039(96)01687-5
  12. Park WH, Lee HD (1999) An illustrated guide book of colorful Korean medicinal mushroom, p. 442-443, Gyohaksa, Korea
  13. Yearul KA, Shuichi K (1989) Dietary mushroom reduce blood pressure in spontaneously hypertensive rat. J Nutr Sci Vitaminol 35: 91-96 https://doi.org/10.3177/jnsv.35.91
  14. Yanmaguchi M, Yearul KA (1987) Effect of shitake and maitake mushroom on blood pressure and plasm lipids of spontaneously hypertensive rats. J Nutr Sci Vitaminol 33: 341-345 https://doi.org/10.3177/jnsv.33.341
  15. Mizuno T, Wasa T, Ito H, Suzuki C, Ukai N (1992) Antitumor active polysaccharides isolated from the fruiting body of Hericum erinaceus: an edible and medicinal mushroom called Yamabushitake or Houtou. Biosci Biotech Biochem 56: 347-348 https://doi.org/10.1271/bbb.56.347
  16. Ryu SR, Lee WY, Ka KH (2009) Comparative study on the sawdust cultivation and the antioxidant of Hericum spp. Kor J Mycol 37: 80-85 https://doi.org/10.4489/KJM.2009.37.1.080
  17. Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, Sakemi S, Bordner J, Kojima N, Furukawa S (1996) Erinacines E, F and G stimulator of nerve growth factor (NGF)-synthesis from the mycelia of Hericum erinaceus. Tetrahedon Letters 37: 7399-7402 https://doi.org/10.1016/0040-4039(96)01687-5
  18. Ju JC, Shin JH, Lee SJ, Cho HS, Sung NJ (2006) Antioxidative activity of hot water extracts from medicinal plants. J Kor Soc Food Sci Nutr 35: 7-14 https://doi.org/10.3746/jkfn.2006.35.1.007
  19. Folin O, Denis W (1912) On phoshotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243 https://doi.org/10.1016/S0021-9258(18)88697-5
  20. Blois MS (1958) Antioxidant determination by the use of stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  21. Stirpe F, della Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3863 https://doi.org/10.1016/S0021-9258(17)36428-1
  22. Tibbot BK, Skadsen RW (1996) Molecular cloning and characterization of a gibberellin-inducible, putative a-glucosidase gene from barley. Plant Mol Biol 30: 229-241 https://doi.org/10.1007/BF00020110
  23. Dorfman A, Ott ML (1948) A turbidimetric method for the assay of hyaluronidase. J Biol Chem 172: 367-375 https://doi.org/10.1016/S0021-9258(19)52721-1
  24. Wunsch E, Heidrich HG (1963) Zur quantitativen bestimmung der kollagenase. Hoppe-Seyler'eyle Physiol Chem 333: 149-151 https://doi.org/10.1515/bchm2.1963.333.1.149
  25. Hearing VJ Jr (1987) Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed. Methods Enzymol 142: 154-165 https://doi.org/10.1016/S0076-6879(87)42024-7
  26. Lee JT, Jeong YS, An BJ (2002) Physiological activity of Salicornia herbacea and its application for cosmetic materials. Kor J Herb 17: 51-60
  27. Davidson PM, Parish ME (1989) Methods for testing the efficacy of food antimicrobials. Food Technol 43: 148-155
  28. Choi HS, Kim MG, Shin JJ, Pack JM, Lee JS (2003) The antioxidant activities of the some commercial teas. J Kor Soc Food Sci Nutr 32: 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  29. Farag RS, Badei AZMA, Hewedi FM, El-Baroty GSA (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J Am Oil Chem Soc 66: 792-799 https://doi.org/10.1007/BF02653670
  30. Frei B (1994) Natural antioxidants in human health and disease. Academic Press Publisher, p 40-55, Cambridge, Massachusetts, USA
  31. Baker JF, Schumacher HR (2010) Update on gout and hyperuricemia. Int J Clin Pract 64: 371-377 https://doi.org/10.1111/j.1742-1241.2009.02188.x
  32. Lee EH, Park HJ, Kim NH, Hong EJ, Park MJ, Lee SH, Kim MU, An BJ, Cho YJ (2016) Biological activities of Aster scaber extracts. Kor J Food Preserv 23: 393-401 https://doi.org/10.11002/kjfp.2016.23.3.393
  33. Hanefeld M (1998) The role of acarbose in the treatment of non-insulindependent diabetes mellitus. J Diabetes Complications 12: 228-237 https://doi.org/10.1016/S1056-8727(97)00123-2
  34. McDougall GJ, Stewart D (2005) The inhibitory effects of berry polyphenols on digestive enzymes. Bio Factors 23: 189-195
  35. Ghosh P (1994) The role of hyaluronic acid in health and disease: interactions with cells, cartilage and components of synovial fluid. Clin Exp Rheumatol 12: 75-82
  36. Giacomoni PU, Rein G (2001) Factors of skin ageing share common mechanism. Biogerontol 2: 219-229 https://doi.org/10.1023/A:1013222629919
  37. No JK, Soung DY, Kim YJ, Shim KH, Jun YS, Rhee SH, Yokozawa T, Chung HY (1999) Inhibition of tyrosinase by green tea components. Life Sci 65: PL241-246
  38. Hamilton AJ, Gomez BL (2002) Melanins in fungal pathogens. J Med Microbiol 51: 189-191 https://doi.org/10.1099/0022-1317-51-3-189
  39. Tsuji N, Moriwaki S, Suzuki Y, Takema Y, Imokawa G (2001) The role of elastases secreted by fibroblast in wrinkle formation: implication through selective inhibition of elastase activity. Photochem Photobiol 74: 283-290 https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2

Cited by

  1. 복분자 추출물의 Sprague-Dawley rat를 이용한 단회 경구 투여 독성시험 vol.35, pp.4, 2019, https://doi.org/10.6116/kjh.2020.35.4.45.