• Title/Summary/Keyword: 성장온도

Search Result 2,705, Processing Time 0.034 seconds

COMPARATIVE STUDIES ON THE EARLY EMBRYONIC DEVELOPMENT AND GROWTH OF MERETRIX LUSORIA AND CYCLINA SINENSIS (대합(Meretrix lusoria)과 가무락(Cyclina sinensis)의 초기발생 및 성장에 관한 비교연구)

  • CHOI Shin Soc
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.185-195
    • /
    • 1975
  • The comparative studies Were conducted with respect to the artificial spawning early embryonic development, metamorphosis and growth of two species Meretrix lusoria and Cyclina sinensis collected from Inchon, Anmyon island and Buan areas from 1969 to 1974. The highest rate of artificial spawning of M. lusoria, which treated with a dilute ammoniun hydroxide(4/100-5/100N)-seawater solutions, was $25.0-33.3\%$, whereas in C. sinensis the rate of spawning was lower than that of M, lusoria under the similar experimental conditions$(12.5-19.0\%)$. However, the rate of artificial spawning of C. sinensis increased $40\%$ by repeated thermal stimulation. The rate of artificial fertilization of M. lusoria and C. sinensis showed highest value from those individuals which were treated with 1/1000N $NH_4OH$ solution. Their fertilized eggs, then, showed a normal development in the 1/1000N $NH_4OH$ solution. In the early embryonic development of M. lusoria and C. sinensis, the appearance of each of polar body, trochophore and D-shaped veliger were observed around 50min. 5-6 hours, and 23 hours after artificial fertilization respectively. The larval shell lengths of M. lusoria reached to $109,5{\pm}0.7\mu,\;144.6{\pm}1.3\mu$ and $208.0{\pm}0.0\mu$ around, 1, 11 and 20 days, after fertilization respectively. The larval shell lengths of C. sinensis reached to $110.5{\pm}0.6\mu,\;147.8{\pm}1.7\mu,\;and\;235.0{\pm}0.0\mu$ around 1, 10 ana 20 days, after fertilization respectively. The correlations of relative growth rate between the shell length(L) and sell height(H) found by the following simple formula from D-shaped veliger to metamorphosing stage. H=0.77L+6.82 for M. lusoria H=0.75L+8.50 for C. sinensis.

  • PDF

Phytoplankton Community Change of Lake Paldang by Increasing $CO_2$ and Temperature during Spring Cold Water Season ($CO_2$와 수온 증가에 대한 봄철 저수온기 팔당호 식물플랑크톤군집 변화)

  • Lee, Ka-Ram;Sung, Eun-Ju;Park, Hye-Jin;Park, Chae-Hong;Park, Myung-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.588-595
    • /
    • 2013
  • This study investigated the influence of temperature and $CO_2$ increase on phytoplankton growth and community structure during cold water season (spring) in Lake Paldang, Korea. Four experimental treatments of temperature and $CO_2$ manipulation were prepared in the laboratory batch culture: (1) Control; ambient low temperature ($6{\pm}2^{\circ}C$) and low $CO_2$ (air level, $400mgL^{-1}$), (2) T1; low temperature and high $CO_2$ ($800mgL^{-1}$), (3) T2; high temperature ($20{\pm}2^{\circ}C$) and low $CO_2$, (4) T3; high temperature and high $CO_2$. Algal growth experiment was carried out for 10 days under the light intensity of $70{\mu}mol\;m^{-2}s^{-1}$ (L :D=24 : 0). The level of pH decreased in both T1 and T3, due to dissolution of added $CO_2$. The dominant phytoplankton species of ambient water, Cyclotella meneghiniana succeeded to Fragilaria capucina var. gracilis in high-temperature treatment groups (T2 and T3). Cyanobacteria were very rare at the beginning of the experiment, while Oscillatoria limnetica appeared in only high-temperature groups (T2 and T3) at $6{\sim}7^{th}$ day. $CO_2$ addition in ambient temperature (T1) induced the highest phytoplankton growth, and thereby producing the highest average cell density of $3.27{\pm}0.33\;10^4\;cells\;mL^{-1}$, followed by T2 ($2.65{\pm}0.26\;10^4\;cells\;mL^{-1}$), T3 ($2.09{\pm}0.16\;10^4\;cells\;mL^{-1}$), and Control ($1.86{\pm}0.13\;10^4\;cells\;mL^{-1}$) (F=7.167, p=0.000). In summary, temperature increase changed the phytoplankton community structure and $CO_2$ increase promoted the phytoplankton growth during the cold spring season in Lake Paldang, suggesting a potential effect of climate change on freshwater phytoplankton.

Fermentation Process Characteristics of Phaffia rhodozyma Mutant B76 for Astaxanthin Biosynthesis (Astaxanthin 생합성을 위한 Phaffia rhodoxyma 변이주 B76의 발효공정 특성)

  • 임달택;이은규
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2000
  • Specific carotenoids and astaxanthin biosynthesis power of Phaffia rhodozyma mutant 876, which was obtained after NTG a and UV treatments, was higher than those of the wild type by 40% and 50%, respectively. The mutant strain did not show t the catabolite repression even at 22% (w/v) glucose concentration. The optimum C{N ratio was 2.0, and the optimum t temperature and initial pH were $22^{\circ}C$ and 6.0, respectively. 80th cell growth and astaxanthin formation decreased drastically a as the fermentation temperature was increased over $22^{\circ}C$, whereas they were comparable in the pH range between 5.0 and 7 7.0. Inoculum size did not affect the final cell density nor the carotenoids biosynthesis, and 3%(v/v) was selected as optimal. H Higher dissolved oxygen concentration facilitated astaxanthin biosynthesis, and aeration rate of 1.0 v/0/m and agitation speed of 400 rpm were selected as optimum. The final cell dens때 of 43.3 g/L and the volumetric astaxanthin and carotenoids concentrations of 110.6 mg/L and 149.4 mg/L, respectively, were obtained. The specific carotenoids concentration was 3.45 m mg{g-yeast(dry). Yx/s and Yp/s values of 0.37 and 1.08 were obtained. The result of this study will provide basic information u useful for mass production of astaxanthin from P. rhodozyma fermentation.

  • PDF

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

A Study on Status Analysis for Advancement iNto Agricultural Sector in Central Asia (중앙아시아 농업분야 진출을 위한 현황분석 - 우즈베키스탄, 카자흐스탄, 키르기즈스탄 중심으로 -)

  • Park, Dong-Jin;Jo, Sung-Ju;Park, Jeong-Woon;Sa, Soo-Jin;Hong, Jung-Sik;Lee, Dong-Jin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.328-338
    • /
    • 2018
  • Central Asia (Uzbekistan, Kazakhstan, Kyrgyzstan) is a hot and arid continental climate, with most areas (68%) consisting of barren vegetation, desert, and meadows. The main agricultural areas for crop production include irrigated farmland, non-irrigated farmland, grassland, prairie and mountain. We are experiencing climate change with recent climate variability increasing. Agriculture is one of major economic sectors and provides a means of livings for the rural population of Central Asia, especially the poor. In the past two decades, Central Asia has experienced a high population growth rate, with Kazakhstan at 16.8%, Uzbekistan at 34.5% and Kyrgyzstan at 28.4%. As a major industry, Kazakhstan has the largest share of exports of agricultural products followed by petroleum, mineral resources, steel, and chemicals. Uzbekistan is the fifth largest cotton exporter as well as the sixth largest cotton producer in the world. Kyrgyzstan exports ores, stones, cultured pearls, and minerals. These three countries are rich in mineral resources, agricultural products, and energy resources. However, not only do they have difficulties in economic development due to the weakness of logistics and industrial infrastructure, but they also have imperceptible cooperation and investment among countries due to insufficient research and development. Through this study, we will investigate national outlook, economic indicators, major agricultural products, import and export status, and agricultural technology cooperation status, and study how Korean agricultural industry advances into these countries through SWOT analysis. Through this, we hope to contribute to the basic data of Central Asian studies and cooperation and investment in agriculture in each country. In addition, in order to increase cooperative exchange and investment in these countries, we will prepare a Central Asia logistics hub for the rapidly changing interKorean railroad era.

Comparison of Conchocelis Formation in the Oyster Shell of Neopyropia Yezoensis with Water Temperature Change (수온 변화에 따른 방사무늬김(Neopyropia yezoensis) 패각 사상체의 각포자 형성량 비교)

  • Eun Taek Lee;Dal Sang Jeong;Chul Won Kim;Sung Je Choi
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.3
    • /
    • pp.19-29
    • /
    • 2023
  • This study investigated effect of water temperature change on the formation and release of conchospores of Neopyropia yezoensis. We observed that conchocelis growth and conchospores formation in oyster shell at labolatory during 7 weeks. In order to investigate the amount of conchospore formation in oyster shells, which was being cultured at 28℃, was moved to 10℃, 18℃, 28℃, and culture during 6 weeks. At 10℃, we observed an average of 127 for 1 week, 127 for 2 weeks, 95 for 3 weeks, 90 for 4 weeks, 76 for 5 weeks, and 75 for 6 weeks. At 18℃, we observed an average of 141 for 1 week, 135 for 2 weeks, 94 for 3 weeks, 153 for 4 weeks, 162 for 5 weeks, and 2 for 6 weeks. At 28℃, we observed an average of 167 for 1 week, 102 for 2 weeks, 148 for 3 weeks, 157 for 4 weeks, 270 for 5 weeks, and 138 for 6 weeks. Conchospores released from the shell grew into a young thalli in the culture for 6 weeks, and the number of ones was counted. The number of young thalli were investigated at 10℃, 0 for 1 week, 189 for 2 weeks, 200 for 3 weeks, 89 for 4 weeks, 56 for 5 weeks and 27 for 6 weeks. At 18℃, It observed 0 for 1 week, 26 for 2 weeks, 546 for 3 weeks, 16 for 4 weeks, 17 for 5 weeks and 154 for 6 weeks. It was not observed at 28℃.

Influence of Nd2O3 Addition to 0.3CaTiO3-0.7(Li1/2Nb1/2)TiO3 on their Microwave Dielectric Properties (Nd2O3 첨가가 0.3CaTiO3-0.7(Li1/2Nb1/2)TiO3 세라믹스의 마이크로파 유전특성에 미치는 영향)

  • 김범수;박일환;윤상옥;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • The effects of $Nd_2O_3$ addition to $Q{\cdot}f_{0}(GHz)$ ceramics with ${\varepsilon}_r$ of 126, $Q{\cdot}f_{0}(GHz)$ of 2240 and of $68\;ppm/^{\circ}C$ on their microwave properties were investigated. For the addition of 5 wt% $Nd_2O_3$, the dielectric constant (${\varepsilon}_r$) showed maximum value of 131, then decreased with the further addition of $Nd_2O_3$. $Q{\cdot}f_{0}(GHz)$ value was still increased to 3533 with 9 wt% $Nd_2O_3$ addition, it is influenced by densification of grain boundary. With more addition of $Nd_2O_3$ up to 18 wt%, the abnormal grain growth have influence on the decreasing of $Q{\cdot}f_{0}(GHz)$ value. But with the further addition of $Nd_2O_3$ over 25 wt%, the $Q{\cdot}f_{0}(GHz)$ value was again increased by the effect of the second phase ($Nd_2Ti_2O_7$) forming. The temperature coefficient of resonant frequency (${\tau}_f$) was decreased from $+\;68\;ppm/^{\circ}C$ with the addition of $Nd_2O_3$, reached $0\;ppm/^{\circ}C$ at 12 wt% addition, and became negative with the further addition of $Nd_2O_3$. The optimum microwave dielectric properties were obtained for $0.3CaTiO_3-0.7(Li_{1/2}Nd_{1/2})TiO_3$ with 9 wt% $Nd_2O_3$ sintered at $1425^{\circ}C$ for 3 hrs. The dielectric constant (${\varepsilon}_r$), the $Q{\cdot}f_{0}(GHz)$ value, and the temperature coefficient of resonant frequency (${\tau}_f$) were 108, 3533, and $+\;6\;ppm/^{\circ}C$, respectively.

Investigation on Characteristics of Swine Manure of Optimum Volume for Escalator Reversing Composting Facility (돼지분뇨 특성에 따른 기계교반 퇴비화시설의 적정용적 산정 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Yoo, Y.H.;Youn, C.K.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.105-112
    • /
    • 2008
  • This study was carried out to investigate evaporation rate of moisture per surface area and degradation rate of organic matter in full scale escalator reversing composting facility were analyzed to develope a computer program for the computation of an optimum volume of composting facility according to handling methods of swine farm, moisture levels of manure, degradation rate of organics and evaporation rate of moisture during composting. The obtained results can be followed as bellow; The temperature in full scale escalator reversing composting facility during composting reached $70^{\circ}C$ in 4 days and maintained until 11 days. Reduction rate of moisture and density was average 1.20% and 29.7%, respectively. Annual degradation rate of organic matter was 3.53%, showing lowest rate in winter as 3.23%. These seasonal degradation rate could be a factor to be considered for proper management and installation of composting facility. When computed with the amount of feces, urine, slurry and manure plus wastewater produced, the optimum volumes of composting facility for slurry and manure plus wastewater including each 95% moisture was $229m^3$ and $277m^3$, respectively, showing 21% ($48m^3$) difference.

  • PDF

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation (진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성)

  • Lee, Jeoung-Ju;Sung, Byeong-Hoon;Lee, Jong-Duk;Park, Chang-Young;Kim, Kun-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2009
  • $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.