DOI QR코드

DOI QR Code

Phytoplankton Community Change of Lake Paldang by Increasing $CO_2$ and Temperature during Spring Cold Water Season

$CO_2$와 수온 증가에 대한 봄철 저수온기 팔당호 식물플랑크톤군집 변화

  • Lee, Ka-Ram (Department of Environmental Science, Konkuk University) ;
  • Sung, Eun-Ju (Department of Environmental Science, Konkuk University) ;
  • Park, Hye-Jin (Department of Environmental Science, Konkuk University) ;
  • Park, Chae-Hong (Department of Environmental Science, Konkuk University) ;
  • Park, Myung-Hwan (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Received : 2013.05.13
  • Accepted : 2013.12.28
  • Published : 2013.12.31

Abstract

This study investigated the influence of temperature and $CO_2$ increase on phytoplankton growth and community structure during cold water season (spring) in Lake Paldang, Korea. Four experimental treatments of temperature and $CO_2$ manipulation were prepared in the laboratory batch culture: (1) Control; ambient low temperature ($6{\pm}2^{\circ}C$) and low $CO_2$ (air level, $400mgL^{-1}$), (2) T1; low temperature and high $CO_2$ ($800mgL^{-1}$), (3) T2; high temperature ($20{\pm}2^{\circ}C$) and low $CO_2$, (4) T3; high temperature and high $CO_2$. Algal growth experiment was carried out for 10 days under the light intensity of $70{\mu}mol\;m^{-2}s^{-1}$ (L :D=24 : 0). The level of pH decreased in both T1 and T3, due to dissolution of added $CO_2$. The dominant phytoplankton species of ambient water, Cyclotella meneghiniana succeeded to Fragilaria capucina var. gracilis in high-temperature treatment groups (T2 and T3). Cyanobacteria were very rare at the beginning of the experiment, while Oscillatoria limnetica appeared in only high-temperature groups (T2 and T3) at $6{\sim}7^{th}$ day. $CO_2$ addition in ambient temperature (T1) induced the highest phytoplankton growth, and thereby producing the highest average cell density of $3.27{\pm}0.33\;10^4\;cells\;mL^{-1}$, followed by T2 ($2.65{\pm}0.26\;10^4\;cells\;mL^{-1}$), T3 ($2.09{\pm}0.16\;10^4\;cells\;mL^{-1}$), and Control ($1.86{\pm}0.13\;10^4\;cells\;mL^{-1}$) (F=7.167, p=0.000). In summary, temperature increase changed the phytoplankton community structure and $CO_2$ increase promoted the phytoplankton growth during the cold spring season in Lake Paldang, suggesting a potential effect of climate change on freshwater phytoplankton.

본 연구에서는 봄철 저수온기 팔당호 수역의 식물플랑크톤을 이용하여 수온과 $CO_2$ 증가가 식물플랑크톤 군집에 미치는 영향을 분석하였다. 2012년 3월 팔당호 경안천하류 광동교 부근의 현장수를 이용하여 수온증가와 $CO_2$ 농도증가를 네 가지 실험군, (1) Control; 저온(현장수온)과 저농도(공기중) $CO_2$ ($6{\pm}2^{\circ}C$, 400 ppm), (2) T1; 저온과 고농도 $CO_2$ ($6{\pm}2^{\circ}C$, 800 ppm), (3) T2; 고온과 저농도 $CO_2$ ($20{\pm}2^{\circ}C$, 400 ppm), (4) T3; 고온과 고농도 $CO_2$ ($20{\pm}2^{\circ}C$, 800 ppm)으로 하여 각각 실험하였다. 가장 높은 조류성장을 보인 실험군은 T1으로 현장 온도조건에 적응한 조류 군집에 $CO_2$를 첨가한 결과이다. 현장수의 주요 우점종은 Cyclotella meneghiniana로 나타났고, 시간이 진행됨에 따라 고온 실험군(T2, T3)에서는 중심돌말류 Cyclotella meneghiniana에서 깃돌말류 Fragilaria capucina var. gracilis로 우점종의 천이가 나타났다. 모든 실험군에서 규조류가 우점하였고, 고온 실험군 T2, T3에서 배양 후반기에 남조류가 출현하였다. 결론적으로, 저수온기 수온증가는 팔당호 식물플랑크톤 군집구조 변화에 영향을 주었으며, $CO_2$ 농도 증가는 식물플랑크톤의 성장을 촉진시켰다. 본 연구의 결과는 기후변화에 따라 담수생태계의 식물플랑크톤의 성장과 군집변화의 잠재성을 보여주었으며, 앞으로 보다 심도 있는 연구의 필요성을 제기하였다.

Keywords

References

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association. Washington, D. C. USA.
  2. Beardall, J., A. Johnston and J. Raven. 1998. Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany 76: 1010-1017.
  3. Belgrano, A., O. Lindahl and B. Hernroth. 1999. North Atlantic Oscillation (NAO) primary productivity and toxic phytoplankton in the Gullmar Fjord, Sweden (1985.96). Proceedings of the Royal Society B 266: 425-430. https://doi.org/10.1098/rspb.1999.0655
  4. Biswas, H., A. Cros, K. Yadav, V.V. Ramana, V.R. Prasad, T. Acharyya and P.V.R. Babu. 2011. The response of a natural phytoplankton community from the Godavari River Estuary to increasing $CO_{2}$ concentration during the premonsoon period. Journal of Experimental Marine Biology and Ecology 407: 284-293. https://doi.org/10.1016/j.jembe.2011.06.027
  5. Choi, K.H., S.J. Hwang, H.S. Kim and M.S. Han. 2003. Temporal changes of limiting nutrients and phytoplankton growth rate in Lake Paldang. Korean Journal of Limnological Society 36: 139-149.
  6. Chung, J. 1993. Illustration of the freshwater algae of Korea. Academybook, Seoul, Korea.
  7. Feng, Y., C.E. Hare, K. Leblanc, J.M. Rose, Y. Zhang, G.R. DiTullio, P. Lee, S. Wilhelm, J.M. Rowe and J. Sun. 2009. The effects of increased $pCO_{2}$ and temperature on the north Atlantic spring bloom: I. the phytoplankton community and biogeochemical response. Marin Ecology Progress Series 388: 13-25. https://doi.org/10.3354/meps08133
  8. Feng, Y., M.E. Warner, Y. Zhang, J. Sun, F.X. Fu, J.M. Rose and D.A. Hutchins. 2008. Interactive effects of increased $pCO_{2}$, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43: 87-98. https://doi.org/10.1080/09670260701664674
  9. Fromentin, J.M. and B. Planque. 1996. Calanus and the environment in the eastern North Atlantic. II: Influence of the North Atlantic Oscillation on C. finnmarchicus and C. helgolandicus. Marine Ecology Progress Series 134: 111-118. https://doi.org/10.3354/meps134111
  10. Fu, F.X., M.E. Warner, Y. Zhang, Y. Feng and D.A. Hutchins. 2007. Effects of increased temperature and $CO_{2}$ on photosynthesis, growth, and elemental ratios in marine synechococcus and prochlorococcus (cyanobacteria). Journal of Phycology 43: 485-496. https://doi.org/10.1111/j.1529-8817.2007.00355.x
  11. Graham, L.E., J.M. Graham and L.W. Wilcox. 2009. The Roles of Algae in Biogeochemistry, p. 18-37. In: ALGAE (2nd ed.). Pearson Education, London, UK.
  12. Gudmundsdottir, R., G.M. Gislason, S. Palsson, J.S. Olafsson, A. Schomacker, N. Friberg, G. Woodward, E.R. Hannesdottir and B. Moss. 2011. Effects of temperature regime on primary producers in Icelandic geothermal streams. Aquatic Botany 95: 278-286. https://doi.org/10.1016/j.aquabot.2011.08.003
  13. Hare, C.E., K. Leblanc, G.R. DiTullio, R.M. Kudela, Y. Zhang, P.A. Lee, S. Riseman and D.A. Hutchins. 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marin Ecology Progress Series 352: 9-16. https://doi.org/10.3354/meps07182
  14. Hutchins, D.A., F. Fu, Y. Zhang, M.E. Warner, Y. Feng, K. Portune, P.W. Bernhardt and M.R. Mullholland. 2007. $CO_{2}$ control of trichodesmium $N_{2}$ fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography 52: 1293-1304. https://doi.org/10.4319/lo.2007.52.4.1293
  15. Hutchinson, G.E. 1957. A Treatise on Limnology. I. Geography, Physics, and Chemistry. John Wiley & Sons, Inc., New York.
  16. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller eds.). Cambridge University Press, Cambridge, United Kingdom and New York, USA.
  17. Johnson, V., C. Brownlee, R.E.M. Rickaby, M. Graziano, M. Milazzo and J. Hall-Spencer. 2013. Responses of marine benthic microalgae to elevated $CO_{2}$. Marine Biology 160(8): 1813-1824. https://doi.org/10.1007/s00227-011-1840-2
  18. Kim, J.K., S.H. Lee, H.H. Bang and S.O. Hwang. 2009. Characteristics of algae occurrence in lake Paldang. Journal of Korea Society of Environmental Engineers 31: 325-331.
  19. Kim, Y.J. 1996. Ecological study of phytoplankton community and trophic states using indicators in lake Paltang. Korean Journal of Limnological Society 29: 323-345.
  20. Komarek, J. 1991. A review of water-bloom forming Microcystis species with regard to populations from Japan. Archiv fur Hydrobiologie Supplement, Algological Studies 64: 115-127.
  21. Krammer, K. and H. Lange-Bertalot. 1991. Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunituaceae. Süsswasser-flora von Mitteleuropa. (2 Ed.) 2(3): 1-576. Gustav Fischer, Stuttgart.
  22. Lassen, M.K., K.D. Nielsen, K. Richardson, K. Garde and L. Schluter. 2010. The effects of temperature increases on a temperate phytoplankton community-A mesocosm climate change scenario. Journal of Experimental Marine Biology and Ecology 383: 79-88. https://doi.org/10.1016/j.jembe.2009.10.014
  23. Lomas, M.W. and P.M. Gilbert. 1999. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnology and Oceanography 44: 556-572. https://doi.org/10.4319/lo.1999.44.3.0556
  24. Meteorological Research Institute. 2004. The Korea climate change for 100 years and future outlook. Meteorological Research Institute, Seoul, Korea.
  25. McKee, D., D. Atkinson, S.E. Collings, J.W. Eaton, A.B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson and B. Moss. 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707-722. https://doi.org/10.4319/lo.2003.48.2.0707
  26. Noiri, Y., I. Kudo, H. Kiyosawa, J. Nishioka and A. Tsuda. 2005. Influence of iron and temperature on growth, nutrient utilization ratios and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment. Progress in Oceanography 64: 149-166. https://doi.org/10.1016/j.pocean.2005.02.006
  27. Park, H.J., B.H. Kim, D.S. Kong and S.J. Hwang. 2012. The effect of elevated $CO_{2}$ level on the water quality and periphytic algal community in indoor experimental channels. 2012 Korea Society of Limnology Congress. P-146.
  28. Park, H.K. and W.H. Jheong. 2003. Long-term changes of algal growth in Lake Paldang. Journal of Korean Society on Water Quality 19: 673-684.
  29. Reid, P.C., M. Edwards, H.G. Hunt and A.J. Warner, 1998. Phytoplankton change in the North Atlantic. Nature 391: 546-546. https://doi.org/10.1038/35290
  30. Reynolds, C.S. 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography 3: 141-159. https://doi.org/10.1111/j.1600-0587.1980.tb00721.x
  31. Reynolds, C.S. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111-114. https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
  32. Sandgren, C.D., J.P. Smol and J. Kristianse. 1995. Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press, Cambridge, United Kingdom.
  33. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433- 471.
  34. Straile, D. and W. Geller. 1998. The response of Daphnia to changes in trophic status and weather patterns: a case study from Lake Constance. ICES Journal of Marine Science 55: 775-782. https://doi.org/10.1006/jmsc.1998.0397
  35. Wetzel, R.G. 2001. Planktonic communities: Algae and Cyanobacteria, p. 331-394. In: Limnology: Lake and River Ecosystems (3rd ed.). Academic Press, California, USA.
  36. Weyhenmeyer, G.A. 2001. Warmer Winters: Are Planktonic Algal Populations in Sweden's Largest Lakes Affected? Ambio: A Journal of the Human Environment 30: 565-571.
  37. Wolf-Gladrow, D.A., U. Riebesell, S. Burkhardt and J. Bijma. 1999. Direct effects of $CO_{2}$ concentration on growth and isotopic composition of marine plankton. Tellus 51B: 461-476.
  38. You, K.A., M.S. Byeon, S.J. Youn, S.J. Hwang and D.H. Rhew. 2013. Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North Han River, Korea. Korean Journal of Ecology and Environment 46: 135-144. https://doi.org/10.11614/KSL.2013.46.1.135