Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.135-138
/
2011
자바스크립트 언어는 클라이언트 사이드 웹 언어로서 지금까지 널리 사용되어 왔다. 그러나 최근에서야 내장형 시스템에서의 웹 브라우징이 보급되면서 그 성능이 이슈가 되고 있는데, 이를 위해 여러 오픈 소스 진영에서 적시 컴파일러를 탑재한 고성능의 자바스크립트 엔진이개발되고 있다. 그 중 V8 자바스크립트 엔진이 현재는 성능이 가장 좋은 것으로 알려져 있으나, 자바스크립트 언어의 극도로 동적인 특성으로 인하여 아직 성능의 최적화 여지가 많이 남아 있다. 본 논문에서는 V8 자바스크립트 엔진의 적시 컴파일러에서 함수 호출 코드 생성에 관한 최적화를 적용 하였다. 두 개의 명령어와 하나의 상수 풀을 사용하던 기존의 함수 호출 코드에서 하나의 명령어만으로 함수 호출을 하도록 구현함으로써 성능이 1.5% 개선되었고, 네이티브 캐시 사용량이 7.7% 감소하였다.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.389-392
/
2005
본 논문의 컴포넌트 검색 시스템의 성능을 향상시키기 위해 사용자 피드백을 효율적으로 수행하는 방법을 제안하고자 한다. 기존의 퍼지 기법이 적용된 삼각형 모양의 퍼지화 함수는 컴포넌트를 선택할 때마다 매번 4가지 경우의 그래프를 재구성해야 하는 어려움이 있다. 본 연구에서는 이러한 피드백의 단점을 극복하기 위하여 검색된 컴포넌트의 선택여부에 따라 동일한 함수이지만 학습률을 달리할 수 있는 가우시안 함수를 이용한 상호작용 함수를 제안한다. 가우시안 함수를 피드백 함수로 채택 시 함수의 파라메타에 따른 검색 성능을 비교하고, 이를 토대로 가장 효율적인 동적 상호작용 함수를 제안하여 소수의 컴포넌트로도 좋은 검색 결과가 가능한 검색 시스템을 구축하고자 한다.
This paper evaluates software cost estimation models, and presents the most suitable model. First, we transformed a relevant model into variables to make in linear. Second, we evaluated model's performance considering how much suitable the cost data of the actual development software was. In the stage of model performance evaluation criteria, we used MMRE which is the relative error concept rather than the absolute error. Existing software cost estimation model follows Weibull, Gamma, and Rayleigh function. In this paper, Gompertz function model is suggested which is a kind of growth curve. Additionally, we verify the compatability of other different growth curves. As a result of evaluation of model's performance, Gompertz function was considered to be the most suitable for the cost estimation model.
KIPS Transactions on Software and Data Engineering
/
v.9
no.7
/
pp.213-220
/
2020
The convolutional neural network is composed of convolutional layers and fully connected layers. The nonlinear activation function is used in each layer of the convolutional layer and the fully connected layer. The activation function being used in a neural network is a function that simulates the method of transmitting information in a neuron that can transmit a signal and not send a signal if the input signal is above a certain criterion when transmitting a signal between neurons. The conventional activation function does not have a relationship with the loss function, so the process of finding the optimal solution is slow. In order to improve this, an agile activation function that generalizes the activation function is proposed. The agile activation function can improve the performance of the deep neural network in a way that selects the optimal agile parameter through the learning process using the primary differential coefficient of the loss function for the agile parameter in the backpropagation process. Through the MNIST classification problem, we have identified that agile activation functions have superior performance over conventional activation functions.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.10A
/
pp.1492-1498
/
2000
Pilot symbol aided modulation (PSAM) using the conventional sinc interpolation (CSI) achieves nearly the same BER performance as Caver' optimal Wiener interpolation but with much less complexity. The CSI, however, has to use a non-rectangular window function that is applied to the sinc function to smooth out the abrupt truncation of rectangular window. In this paper, we propose the modified sinc interpolation (MSI). With the weighting factor the MSI scheme with no window has almost the same BER performance as the CSI scheme using window, In addition, if we use the MSI with a window its BER performance gets close to that of the theoretical one. We assume the multicarrier QAM system and an optimal frame structure for performance evaluation.
KIPS Transactions on Software and Data Engineering
/
v.11
no.1
/
pp.1-10
/
2022
Deep neural networks are widely used to solve various problems. In a fully connected neural network, the nonlinear activation function is a function that nonlinearly transforms the input value and outputs it. The nonlinear activation function plays an important role in solving the nonlinear problem, and various nonlinear activation functions have been studied. In this study, we propose a combined parametric activation function that can improve the performance of a fully connected neural network. Combined parametric activation functions can be created by simply adding parametric activation functions. The parametric activation function is a function that can be optimized in the direction of minimizing the loss function by applying a parameter that converts the scale and location of the activation function according to the input data. By combining the parametric activation functions, more diverse nonlinear intervals can be created, and the parameters of the parametric activation functions can be optimized in the direction of minimizing the loss function. The performance of the combined parametric activation function was tested through the MNIST classification problem and the Fashion MNIST classification problem, and as a result, it was confirmed that it has better performance than the existing nonlinear activation function and parametric activation function.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.5A
/
pp.855-862
/
2001
본 논문에서는 백색잡음과 페이딩 환경하의 통신시스템의 성능평가시 백색잡음에 대해서만 모멘트 기법을 이용조건부 오류확률을 구하고 페이딩에 대해서는 해석적 접근방식을 취함으로써 전체적인 컴퓨터 수행시간을 획기적으로 개선시킬 수 있는 기법을 제안하고, 제안된 기법의 효율성을 컴퓨터 시뮬레이션 수행시간 비교를 통해 입증하였다. 현재 널리 사용되는 Monte Carlo 시뮬레이션 기법은 IS-95 순방향 채널과 같이 많은 샘플수를 필요로 하는 시스템에서 상당한 시뮬레이션 수행시간을 요구하게 된다. 이러한 문제점을 해결하기 위하여, 제안된 방식에서는 백색잡음하의 수신신호의 N차 모멘트를 측정하여 이산확률밀도함수를 구함으로써 수신신호의 확률적 특성을 모사하고, 이로부터 내삽법과 외삽법을 적용하여 조건부 누적확률분포함수를 산출함으로써 채널오류율을 구하게 된다. 그리고 페이딩 성능평가시 조건부 채널오류율을 이용하여 산출된 조건부 누적확률분포함수를 환경조건에 맞춘 후에 페이딩의 확률밀도함수와 수치 해석적으로 간단히 적분하여 성능평가를 함으로써 수행시간의 줄임과 동시에 정확한 채널오류율을 구하게 된다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.224-227
/
2022
객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.18
no.6
/
pp.642-653
/
2008
This study deals with modeling of head-related transfer functions(HRTFs) using principal components analysis(PCA) in the time and frequency domains. Four PCA models based on head-related impulse responses(HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.149-152
/
2002
본 연구에서는 밸브의 입출력 류량 검출 센싱 장치 및 류량 성능 특성 곡선을 측정하는 소프트웨어를 개발하였다. 본 개발품은 기체 또는 액체의 양을 조절하는 밸브의 정밀한 제품을 생산할 수 있는 시스템이다. 멤버쉽함수의 최적한 폭을 자기동조에 의해 선정할 수 있었으며, 이를 이용하여 밸브의 압력 제어 성능을 보다 정밀하게 보정 할 수 있었다. 기체 또는 액체의 유량을 조절하는 감압 자동 조절밸브의 성능을 온라인으로 시험 할 수 있는 소프트웨어를 국산화하였다. 본 제품의 개발 결과 우수한 성능을 가진 감압 밸브 성능자동 보정 시험 검사용 소프트웨어임을 확인하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.