고령보행자를 포함한 교통약자는 신체적 능력이 저하되어 보행속도가 상대적으로 낮으며, 인지반응시간이 느린 특성을 가지고 있지만, 현재 교통약자를 위한 보행신호는 0.8m/s로 일률적으로 적용하고 있다. 문제점을 개선하기 위하여 스마트 횡단시스템이 개발되어 운영되고 있지만, 보행자별 적정 보행속도를 반영한 신호운영이 이루어지지 못하고 있다. 본 연구에서는 교통약자비율이 높은 지역에서 수집된 영상정보를 활용하여, 교통약자의 종류, 보행자의 수, 도로의 기하구조 등을 고려한 신경망모형과 다중회귀모형기반의 횡단속도 추정모델을 개발하였다. 이를 통해 개발된 모델을 스마트횡단시스템에 적용하여 실시간 교통약자에 따른 최적 보행신호 제공을 지원하고자 하였다. 경기도 파주시의 도시 교통 네트워크에서 수집된 실제 교통 상황 데이터 2,400개를 사용하였다. 모델의 성능은 상관계수, 평균 절대오차 등 7개의 선택된 지표를 통해 평가되었다. 다중선형회귀모델은 상관 계수가 0.652이고 MAE가 0.182였으며, 신경망모델은 상관계수가 0.823이고 MAE가 0.105로 나타나. 신경망모델이 더 높은 예측력을 보였다.
높은 에너지 밀도와 고순도 수소 생산의 측면에서 고분자 전해질 연료전지와 수전해가 주목받고 있다. 고분자 전해질 연료전지 및 수전해를 위한 촉매층은 귀금속 계열의 전기 촉매와 이오노머 바인더로 구성되어 있는 다공성 전극이다. 이 중 이오노머 바인더는 촉매층 내 이온 전도를 위한 3차원 네트워크 형성과 전극 반응에 필요한 또는 생성되는 물질들의 이동을 위한 기공 형성에 중요한 역할을 수행한다. 상용 과불소계 이오노머의 활용 측면에서 이오노머의 함량, 이오노머의 물성, 그리고 이를 분산시킬 분산 매체에 촉매층의 성능 및 내구성이 크게 달라진다. 현재까지 고분자 전해질 연료전지용 촉매층을 위한 이오노머의 활용 방법은 많은 연구가 진행되어왔으나 고분자 전해질 수전해 적용 방면에서는 촉매층 연구가 다소 미비한 실정이다. 본 총설에서는 현재까지 보고된 연료전지 측면에서의 이오노머 바인더 활용 연구결과를 요약하였으며, 수소 경제 시대의 가속화를 위해서 고분자 전해질 수전해 핵심요소 중 하나인 촉매층용 이오노머 바인더에 관한 연구에 유용한 정보를 제공하고자 한다.
탄성 영상과 미세 혈류 도플러 영상과 같은 기능성 초음파 영상은 조직의 기계적, 기능적 정보를 제공함으로써 진단 성능을 향상시킨다. 그러나 기능성 초음파 영상의 구현은 데이터 획득 및 처리 시 대용량 데이터 저장과 같은 한계를 야기한다. 본 논문에서는 효율적인 횡탄성 영상 기법을 위해 데이터 획득 양을 절감시키는 서브 나이퀴스트 접근법을 제안한다. 제안하는 방법은 기존 나이퀴스트 샘플링 속도보다 1/3배 낮은 샘플링 속도로 데이터를 획득하고, 주파수 스펙트럼의 주기성을 이용하여 대역 통과 필터링 기반의 보간을 통해 재구성된 Radio Frequency(RF) 신호를 사용하여 횡파 신호를 추적한다. 이때 RF 신호는 67 % 미만의 비대역폭으로 제한된다. 제안하는 접근법을 검증하기 위해 기존 샘플링 속도로 획득한 횡파 추적 데이터를 이용하여 서브 나이퀴스트 샘플링된 RF 신호를 재현하고, 기존 접근법과 횡파 속도 영상을 재구성한다. 정량적 평가를 위해 재구성한 횡파 속도 영상의 군속도, 대조도 잡음 비, 그리고 구조적 유사성 지수를 비교하였다. 우리는 서브 나이퀴스트 샘플링 기반 횡탄성 영상의 가능성을 정성적, 정량적으로 입증하였고, 향후 실시간 3차원 횡탄성 영상 기술에 유용하게 적용 가능할 것으로 기대된다.
IT 인프라 운영이 고도화하면서 시스템을 관리하는 방식이 널리 보급되어 있으며, 최근에는 Syslog를 활용한 개선방법들이 연구되고 있다. 그러나 이러한 방법으로 수집한 로그 데이터를 활용하여 시스템 관제를 할 경우 다양한 형식으로 추출되는 로그를 전문 인력이 분석해야 하는 어려움이 있다. 본 논문은 엣지 컴퓨팅을 활용하여 Syslog 데이터를 분산 수집하고 중복 데이터를 전처리하여 중앙 데이터베이스에 적재하는 시스템을 구축 방법을 제시하고자 한다. 또한, 데이터사전을 구성하여 실시간으로 데이터를 분류하고 카운팅하는 기능을 제공하며, 데이터사전에 등록된 데이터에 대해서는 중앙 데이터베이스로의 전송을 제한하는 시스템을 구현한다. 이를 통해 데이터 사전의 정의어 패턴을 유지하며, 중복 데이터와 시간 중복을 제어하여 중앙 데이터베이스에 정제된 데이터를 적재함으로써 빅데이터 분석을 위한 기초 자료를 확보할 수 있다. 시뮬레이션결과 제안된 알고리즘과 프로시저를 구체적인 예시와 함께 설명하고, syslog 데이터를 활용하여 그 성능을 검증하였다. syslog 데이터는 실제 로그 데이터에서 추출한 예시를 포함하고 있으며 이를 통해 로그 데이터로부터 필요한 정보를 정확하게 추출하였고, 분류 및 적재 과정에서 정상적인 처리가 이루어지는지를 확인하였다. 이러한 시스템은 엣지 환경에서 로그 데이터를 효율적으로 수집하고 관리하기 위한 솔루션으로 활용하여 기술의 확산 측면에서도 효과를 기대할 수 있다.
클라우드 및 빅데이터의 확산, 대규모 트래픽 폭증으로 인하여 기존 네트워크는 복잡성과 관리 효율성에 많은 문제점이 발생하였다. 이 문제를 해결하기 위해 네트워크 장비의 전송 기능과 제어 기능을 분리하여 프로그래밍을 통해 네트워크 장비를 제어 할 수 있는 소프트웨어 정의 네트워킹(SDN) 환경이 제시되었다. 이에 따라 SDN에 기존 레거시 장비들을 연결하는 방법, 효율적인 데이터 통신을 위한 패킷 관리 방법, 중앙 집중화된 구조에서의 컨트롤러 부하를 분산하는 방법 등 SDN 컨트롤러의 성능을 향상시키기 위한 연구들이 많이 진행되고 있다. 그러나 네트워크를 이용하는 애플리케이션 품질 관점에서 SDN을 제어하는 연구는 부족한 실정이다. 즉, 네트워크 서비스 품질을 만족하는 라우팅 경로 구축, 변경 등을 지원하기 위해 애플리케이션 네트워크 서비스 품질에 대한 계약을 기반으로 네트워크의 요구사항을 파악하고 현재 네트워크 상태 정보를 수집하여 네트워크 서비스 품질 위반 상황을 식별하는 메커니즘이 필요하다. 본 논문은 SDN 환경에서 애플리케이션의 네트워크 서비스 품질을 보장하며 원활한 서비스 제공을 위해 온톨로지를 사용하여 네트워크 경로의 품질 위반상황을 판별하는 방법을 제시한다.
임산부의 기존 질병 또는 임신 중 발생한 질병을 치료하기 위한 약물의 사용은 태아에게 잠재적인 위협이 될 수 있으므로 약물의 태아 독성 여부를 예측하는 것이 필수적이다. 하지만 약물의 태아 독성을 밝혀내는 것은 많은 시간과 비용을 필요로 하며 인간 태아에게서 독성 작용을 나타내는 근거가 불분명하다. 이에 따라 최근 태아 독성 평가를 위한 시험 설계의 현대화, 예측성 개선, 동물 사용 및 투자 비용 감소를 위한 in silico 태아 독성 평가 모델의 필요성이 대두되고 있다. 본 연구는 태아 독성 정보를 수집하고 다양한 기계학습 알고리즘을 적용하여 태아 독성 예측이 가능한 모델을 구축하였으며, 태아 독성 예측 모델의 입력 값으로 활용하기 위해 각 약물에 대한 구조적 및 생리학적 특성 벡터를 생성하였다. 이후 예측 정확도 개선을 위해 초매개변수를 조정하여 모델을 최적화 하였다. 개발한 태아 독성 예측 모델의 유효성을 검증하기 위해 학습 셋과 독립된 테스트 셋을 활용하여 정량적 성능 평가를 수행하였으며, 모든 모델의 약물 및 약물 후보 물질의 태아 독성 여부를 예측할 수 있는 것을 확인하였다(AUROC>0.85, AUPR>0.9). 나아가, 예측 모델의 특성 중요도를 분석하여 태아 독성과 관련성이 높은 약물의 특성을 제시하였다. 제안한 모델은 적은 비용과 시간으로 예측 점수를 제공함으로써 인간에 대한 태아 독성 연구를 설계하는 과정에 도움이 될 것을 기대한다.
인터넷 쇼핑에서 상품의 사진과 동영상을 대체해 3D콘텐츠와 웹 3D 소프트웨어로 사용자에게 친숙한 이미지를 제공하려는 시도가 이어지고 있다 본 연구에서는 2D 이미지를 3D로 변환하여 고객들이 다양한 위치에서 상품을 파악할 수 있는 웹 3D 기술에 접목시키고 변환에 필요한 비용과 계산 시간을 줄일 수 있는 자동 변환기술을 제안하였다. 단 8대의 카메라 만을 사용하여 마네킹을 회전하는 턴테이블 위에 올려 놓고 촬영하는 시스템을 개발하였다. 이러한 시스템에서 촬영한 이미지에서 옷 부분만 추출하기 위해 U-net을 이용하여 마커를 제거하고, 배경 영역과 마네킹 영역의 컬러 특징 정보를 파악하여 옷 영역만을 추출하는 알고리즘을 제안하였다. 이 알고리즘을 이용하면 이미지를 촬영한 후 옷 영역만을 추출하는데 걸리는 시간이 이미지 하나당 2.25초며, 한 개의 옷에 대해 64장의 이미지를 촬영하는 경우에 총 144초(2분 4초)가 소요되어 매우 우수한 성능으로 3D오브젝트를 추출할 수 있다.
연근해에서의 선박 전복사고는 소형 어선에서 많이 발생한다. 소형 어선의 전복사고를 예방하기 위해서는 초기설계 단계에서부터 복원성을 평가하는 것이 매우 중요하다. 하지만 초기설계 단계에서 확보할 수 있는 정보는 제한적이어서 신뢰성 있는 복원성을 평가하는 데 어려움이 있다. 이에 본 연구에서는 초기설계 단계에서 추정할 수 있는 KM, KG, 트림을 활용하여 소형 어선의 횡메타센터(GM)를 추정하고, 표준어선형의 안전성 평가 기준에서 제시된 최소횡메타센터(GMmin)와의 차이를 비교하여 복원성을 평가하는 방안을 제안하였다. 한국해양안전교통공단에서 제공하는 복원성 평가프로그램인 K-SHIP을 사용한 Hydrostatics 특성 계산에서 요구되는 트림을 도출하기 위해 상용 CFD 프로그램인 STAR-CCM+를 이용하여 어선 선형에 따른 초기 상태 트림을 추정하였으며, K-SHIP을 사용하여 어선 선형에 대한 Hydrostatics 특성을 계산하여 GM을 추정하였다. 그리고 GM과 GMmin의 비교를 통해 만재출항상태의 복원성을 비교하였다. 실적선을 기준선으로 선정하여 본 연구에서 제안한 복원성 평가 방안을 적용해 복원성을 평가하고 그 타당성을 검증하였다. 결과적으로 4.99톤 어선의 대표적인 선형과 이를 활용해 도출한 모듈 선형 9개의 복원성을 평가하였고, 이중 상대적으로 복원성이 우수한 선형을 선정하였다.
인간 활동 영역이 산지 곳곳에 퍼져 있는 한국에서는 산불이 주거지역이나 각종 시설물을 위협하는 경우가 잦다. 따라서 산불 이후 대책 마련과 피해 복구를 위해 피해 범위를 빠르게 파악할 필요가 있으며, 이러한 경우 원격탐사가 유용한 도구가 될 수 있다. 본 연구에서는 2019년 4월에 발생한 고성·속초 산불 피해지역에 k-nearest neighbor (kNN) 알고리즘을 적용하여 피해 범위를 탐지하는 실험을 수행하였다. 다양한 인공지물을 포함하는 지표와 숲이 혼재된 지역 특성을 고려하여 적절한 공간 해상도와 시간 해상도를 제공하는 Sentinel-2 multispectral instrument (MSI) 자료를 사용하였다. Sentinel-2 MSI의 여섯 밴드와 정규식생지수(NDVI), 정규탄화지수(NBR)를 분류 특성으로 사용하였다. 산불 피해지역과 비피해 지역에서 무작위로 추출된 2,000개 지점 정보를 이용하여 kNN 분류기를 훈련시켰다. 분류 성능을 높이기 위해 데이터에서 특이값을 제거하고 임상도를 병용하였다. 다양한 이웃(neighbor) 수와 분류 특성 조합을 적용하여 산불 후 데이터를 이용한 실험과 산불 전후 데이터 차이를 이용한 실험을 수행하였다. 산불 전후 데이터 차이를 이용하였을 때 더 우수한 분류 성과를 얻을 수 있었지만, 산불 후 데이터만을 이용한 경우에도 피해지역의 범위를 파악할 수 있었다.
본 논문에서는 음향 스펙트로그램을 이용하여 수중 이동표적의 위치를 추정하기 위한 방법을 연구하였다. 주파수와 시간의 2차원 평면으로 표현되는 스펙트로그램은 수중 운동체의 이동 정보를 제공한다. 음원과 수신 센서간의 거리가 충분히 멀 경우 스펙트로그램의 넓은 주파수에 걸쳐 발생하는 줄무늬들은 해수면 및 해저면에 의해 반사된 모드간의 간섭을 의미하고, 이때 최대 음압이 발생하는 줄무늬의 기울기는 음향 도파관 불변인자 ${\beta}$와 표적과 센서간의 거리에 의해 영향을 받는다. 2개 이상의 센서를 사용하여 이동하는 선박의 광대역 방사 소음을 측정한 경우 스펙트로그램에 나타나는 최대 음압이 발생하는 줄무늬의 기울기와 줄무늬가 주파수축에서 천이된 비율이 표적과 센서간의 거리에 따라 각각 다르게 나타난다. 두개의 센서를 두 정점으로 가정하여 표적에 이르는 거리의 비가 일정한 값을 가지면서 운동하는 점의 자취인 아폴로니오스의 원을 형성하고, 3개의 센서를 사용할 경우 두 개의 원이 서로 교점을 형성하는데, 이 교점의 좌표를 표적의 위치라 추정한다. 제안된 위치 추정 기법의 성능을 평가하기 위해 음파전달 프로그램을 이용한 시뮬레이션을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.