• Title/Summary/Keyword: 설계행렬

Search Result 723, Processing Time 0.026 seconds

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

A Low-Complexity Processor for Joint QR decomposition and Lattice Reduction for MIMO Systems (다중 입력 다중 출력 통신 시스템을 위한 저 복잡도의 Joint QR decomposition-Lattice Reduction 프로세서)

  • Park, Min-Woo;Lee, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.40-48
    • /
    • 2015
  • This paper presents a processor that performs QR decomposition (QRD) as well as Lattice Reduction (LR) for multiple-input multiple-output (MIMO) systems. By sharing the operations commonly required in QRD and LR, the hardware complexity of the proposed processor is reduced significantly. In addition, the proposed processor is designed based on a multi-cycle architecture so as to reduce the hardware complexity. The proposed processor is implemented with 139k logic gates in a $0.18-{\mu}m$ CMOS process, and its latency is $5{\mu}s$ for $8{\times}8$ MIMO preprocessing both QRD and LR where the operating frequency is 117MHz.

Codebook Design and Centralized Scheduling for Joint Transmission SDMA with Limited Feedback (제한된 피드백을 사용하는 결합 전송 공간 분할 다중 접속 기술을 위한 코드북 설계와 집중 스케줄링)

  • Mun, Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1180-1187
    • /
    • 2012
  • In this paper, joint transmission space division multiple access(JT-SDMA) scheme is proposed to mitigate inter-cell interference(ICI) in cooperative wireless communications system with limited feedback. We propose a systematic design method for a codebook consisting of a finite number of unitary matrices suitable for network multiple-input multiple-output( MIMO) channel characteristics. A centralized cluster scheduling scheme is proposed to both mitigate ICI and maximizes multiuser diversity gain with limited feedback. It is shown that the proposed JT-SDMA scheme outperforms a existing coordinated SDMA scheme even in wireless network environments where sufficient multiuser diversity order can not be provided through efficient ICI mitigation.

Data Rate Condition for Quantizer Achieving Practical Stability (실용적 안정성을 보장하는 양자화기 데이터 율 조건)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.228-232
    • /
    • 2018
  • Dealing with quntization error in a control system properly becomes much more important as many devices are connected through network and controlled. Thus, in this paper, we study a data rate condition on quantizer to achieve practical stability in a discrete time linear time invariant system with state feedback control. First, required data rate is shown to depend on eigenvalue of the closed loop system, the size of the initial state vector, the magnitude of initial quantization error, and control gain in the absence of process noise. It additionally depends on the maximum magnitude of process noise when noise is not zero. Asymptotic analysis shows that a new design method may be needed to reduce the date rate for a networked control in the presence of quantization error and noise.. We provide a simple numerical evaluation of uniform quantizer and logarithmic qunatizer to assess their characteristics of practical stability depending on data rate in the presence of noise.

Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer (확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정)

  • 조금배;최연옥;정삼용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.115-124
    • /
    • 2001
  • In this paper, authors propose a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on the extended Luenberger Observer theory. Extended Luenberger Observer requires minimal solution of nonlinear partial differential equation on its coordinate transformation and linearization needed on a nonlinear observer design in general. The proposed rotor flux observer is derived from the 2 phase model of induction motor on the orthogonal coordination and it has the reduce gain matrix. Simulation and experimentation were performed under the conventional indirect vector control and direct vector control with the proposed observer at different rotor resistance. Simulation results show that the convergence of the proposed observer is influenced by the chosen eigenvalues. Experimentation results on load operation show the direct vector control with the proposed observer is better than the indirect vector control to maintain the characteristics of the vector control.

  • PDF

A Distributed Vertex Rearrangement Algorithm for Compressing and Mining Big Graphs (대용량 그래프 압축과 마이닝을 위한 그래프 정점 재배치 분산 알고리즘)

  • Park, Namyong;Park, Chiwan;Kang, U
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1131-1143
    • /
    • 2016
  • How can we effectively compress big graphs composed of billions of edges? By concentrating non-zeros in the adjacency matrix through vertex rearrangement, we can compress big graphs more efficiently. Also, we can boost the performance of several graph mining algorithms such as PageRank. SlashBurn is a state-of-the-art vertex rearrangement method. It processes real-world graphs effectively by utilizing the power-law characteristic of the real-world networks. However, the original SlashBurn algorithm displays a noticeable slowdown for large-scale graphs, and cannot be used at all when graphs are too large to fit in a single machine since it is designed to run on a single machine. In this paper, we propose a distributed SlashBurn algorithm to overcome these limitations. Distributed SlashBurn processes big graphs much faster than the original SlashBurn algorithm does. In addition, it scales up well by performing the large-scale vertex rearrangement process in a distributed fashion. In our experiments using real-world big graphs, the proposed distributed SlashBurn algorithm was found to run more than 45 times faster than the single machine counterpart, and process graphs that are 16 times bigger compared to the original method.

Development of Optimization Algorithm Using Sequential Design of Experiments and Micro-Genetic Algorithm (순차적 실험계획법과 마이크로 유전알고리즘을 이용한 최적화 알고리즘 개발)

  • Lee, Jung Hwan;Suh, Myung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.489-495
    • /
    • 2014
  • A micro-genetic algorithm (MGA) is one of the improved forms of a genetic algorithm. It is used to reduce the number of iterations and the computing resources required by using small populations. The efficiency of MGAs has been proved through many problems, especially problems with 3-5 design variables. This study proposes an optimization algorithm based on the sequential design of experiments (SDOE) and an MGA. In a previous study, the authors used the SDOE technique to reduce trial-and-error in the conventional approximate optimization method by using the statistical design of experiments (DOE) and response surface method (RSM) systematically. The proposed algorithm has been applied to various mathematical examples and a structural problem.

Estimation of Geometric Error Sources of Suspension Bridge using Survey Data (측량 데이터를 이용한 현수교의 형상오차 원인 추정)

  • Park, Yong Myung;Cho, Hyun Jun;Cheung, Jin Hwan;Kim, Nam Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2007
  • The study discussed in this paper presents a method of estimating sources of geometric errors in suspension bridges in use, based on geometric survey data. A geometric error is defined as the difference between the survey data and the design geometry of a main cable. It is assumed that the geometric error in a suspension bridge is caused by the variations in the weight of the stiffening girder and the deformation of the anchorage foundations due to the creep of soil. The variations in the girder weight and the deformation of the foundation were estimated by constructing a matrix of factors that affect suspension bridges due to the variations. To check the validity of the proposed method, it was applied to the Kwang-An Bridge, and the sources of geometric errors in the bridge were estimated using the survey data.

Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations (말뚝지지 전면기초의 3차원 근사해석기법 개발)

  • Cho, Jae-Yeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.67-78
    • /
    • 2012
  • A three-dimensional approximate computer-based method, YSPR (Yonsei Piled Raft), was developed for analysis of behavior of piled raft foundations. The raft was modeled as a flat shell element having 6 degrees of freedom at each node and the pile was modeled as a beam-column element. The behaviors of pile head and soil were controlled by using $6{\times}6$ stiffness matrix. To model the non-linear behavior, the soil-structure interaction between soil and pile was modeled by using nonlinear load-transfer curves (t-z, q-z and p-y curves). Comparison with previous model and FEM analysis showed that YSPR gave similar load-displacement behaviors. Comparison with field measurement also indicated that YSPR gave a reasonable result. It was concluded that YSPR could be effectively used in analysis and design of piled raft foundations.

Crosstalk Analysis of Bent Coupled Lines on a PCB (PCB상에 놓여 있는 굽은 결합 선로의 누화 해석)

  • Han, Jae-Kwon;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.191-198
    • /
    • 2007
  • The electromagnetic coupling between transmission lines in PCB design can degrade the performance of equipment operations. The coupling phenomenon is caused by electromagnetic fields generated by the currents on the transmission lines and the risers. In this paper, an improved method of crosstalk analysis for bent coupled lines on a PCB is proposed and investigated. In the previous cascading method combined with circuit-concept approach, bent coupled lines are devided into sections and each section is represented by ABCD matrix and then they are cascaded. In the proposed method, the crosstalk of bent coupled lines is calculated by the modified circuit-concept approach, where the coupled region is not restricted to the region projected by a generator line on a receptor line but is the total length of receptor line in calculating the forcing terms. Finally, the accuracy of the proposed approach is verified by comparing the calculated results with the measured ones for several bent coupled-line examples.