DOI QR코드

DOI QR Code

A Low-Complexity Processor for Joint QR decomposition and Lattice Reduction for MIMO Systems

다중 입력 다중 출력 통신 시스템을 위한 저 복잡도의 Joint QR decomposition-Lattice Reduction 프로세서

  • Park, Min-Woo (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Lee, Sang-Woo (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Tae-Hwan (School of Electronics and Information Engineering, Korea Aerospace University)
  • 박민우 (한국항공대학교 항공전자정보공학부) ;
  • 이상우 (한국항공대학교 항공전자정보공학부) ;
  • 김태환 (한국항공대학교 항공전자정보공학부)
  • Received : 2015.04.21
  • Accepted : 2015.07.28
  • Published : 2015.08.25

Abstract

This paper presents a processor that performs QR decomposition (QRD) as well as Lattice Reduction (LR) for multiple-input multiple-output (MIMO) systems. By sharing the operations commonly required in QRD and LR, the hardware complexity of the proposed processor is reduced significantly. In addition, the proposed processor is designed based on a multi-cycle architecture so as to reduce the hardware complexity. The proposed processor is implemented with 139k logic gates in a $0.18-{\mu}m$ CMOS process, and its latency is $5{\mu}s$ for $8{\times}8$ MIMO preprocessing both QRD and LR where the operating frequency is 117MHz.

본 논문에서는 다중 입력 다중 출력 시스템을 위한 전 처리 과정인 QR Decomposition (QRD) 과 Lattice Reduction (LR)에 대하여, 두 과정의 연산의 공유성을 바탕으로 이를 공동으로 처리하는 프로세서를 제안한다. 제안하는 전 처리 프로세서는 다중 사이클 아키텍처로 설계하여 하드웨어 복잡도를 낮추었고, 두 전 처리 과정을 채널 환경에 따라 선택적으로 수행한다. 제안하는 전 처리 프로세서는 $0.18-{\mu}m$ CMOS공정의 셀 라이브러리를 사용하여 139K의 논리 게이트로 구현되었고, 최대 117MHz의 동작주파수에서 $8{\times}8$ 행렬에 대한 QRD와 LR의 수행에 대하여 $5{\mu}s$의 latency를 갖는다.

Keywords

References

  1. V. Tarokh, H. Jafarkhani, and A. Calderbank. "Space-time block codes from orthogonal designs," IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999. https://doi.org/10.1109/18.771146
  2. P. W. Wolniansky., G. J. Roschini, G. D. Golden, and R. A. Valenzuela. "V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," Proc. Int. Symp. Sig. Sys. Elect. pp. 230-235. Sep. 1998.
  3. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. "Closest point search in lattices," IEEE Trans. Inf. Theory, vol. 48, no.8, pp. 2201-2214. Aug. 2002. https://doi.org/10.1109/TIT.2002.800499
  4. M. O. Damen, H. El Gamal, and G. Caire. "On maximum-likelihood detection and the search for the closest lattice point," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2389-2402, Oct. 2003. https://doi.org/10.1109/TIT.2003.817444
  5. M. Taherzadeh, A. Mobasher and A. K. Khandani. "LLL reduction achieves the receive diversity in MIMO decoding," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4801, Dec. 2006. https://doi.org/10.1109/TIT.2007.909169
  6. P. K. Meher, J. Valls, T. B. Juang, K. Sridharan, K. Maharatna. "50 years of CORDIC: algorithms, architectures, and applications," IEEE Trans. Circuits Syst. I, Reg. Papers. vol. 56. no. 9. pp. 1893 - 1907. Sep. 2009. https://doi.org/10.1109/TCSI.2009.2025803
  7. A. K. Lenstra, H. W. Lenstra, and L. Lovasz, "Factoring polynomials with rational coefficients," Math. Ann, vol. 261, pp. 515-534, 1982. https://doi.org/10.1007/BF01457454
  8. X. Ma and W. Zhang, "Performance analysis for MIMO Systems with lattice-reduction aided linear equalization," IEEE Trans. Commun. vol. 56. no. 2. pp. 309-318. Feb. 2008. https://doi.org/10.1109/TCOMM.2008.060372
  9. Luis G. Barbero, David L. Milliner, T. Ratnarajah, John R. Barry, and C. cowan, "Rapid prototyping Clarkson's lattice reduction for MIMO detection," Proc. IEEE Int. Conf. Commun., pp. 1-5, Jun. 2009.
  10. B. Gestner, Z. Wei, X. Ma, and D. V. Anderson, "Lattice reduction for MIMO detection: From theoretical analysis to hardware realization," IEEE Trans. Circuits Syst. I, Reg. Papers. vol. 58, no. 4. pp. 813-826, Apr. 2011. https://doi.org/10.1109/TCSI.2010.2078670
  11. Tsung-Hsien Liu, Chun-Ning Chiu, Pei-Yu Liu and Yuan-Sun Chu. "Block-Wise QR-Decomposition for the Layered and Hybrid Alamouti STBC MIMO Systems: Algorithms and Hardware Architectures." IEEE Trans. Signal Process. vol. 62. no. 18. Sep. 2014.
  12. Zheng-Yu Huang and Pei-Yun Tsai, "Efficient implementation of QR decomposition for gigabit MIMO-OFDM systems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 10, pp. 2531 - 2542, Oct. 2011. https://doi.org/10.1109/TCSI.2011.2123770
  13. Chungwon Lee, Ho-Kyoung Lee, and Seoweon Heo, "Low-Complexity Lattice Reduction Aided MIMO Detectors Using Look-Up Table," Jour. IEIE. vol. 46. no. 5. pp. 88 - 94. May. 2005.
  14. M. Shabany, A. Youssef, and G. Gulak, "High-throughput 0.13-${\mu}m$ CMOS lattice reduction core supporting 880 Mb/s detection," IEEE Trans. Very Large Scale Integre. (VLSI) Syst.. vol. 21, no. 5, pp. 848-861, 2013. https://doi.org/10.1109/TVLSI.2012.2198927
  15. Chun-Fu Liao, Yuan-Hao Huang. "Power-Saving 4 $\times$ 4 Lattice-Reduction Processor for MIMO Detection With Redundancy Checking," IEEE Trans. Circuits Syst. II. Exp. Briefs. vol. 58. no. 2. Feb. 2011.
  16. Min-Woo Lee and Jongsun Park. "Sign-Select Lookahead CORDIC based High-Speed QR decomposition Architecture for MIMO Receiver Applications," IEIE J. of Semiconductor Technology and Science. vol. 11. no. 1. pp. 6 - 14. Mar. 2011. https://doi.org/10.5573/JSTS.2011.11.1.006
  17. Chun-Fu Liao, Jhong-Yu Wang and Yuan-Hao Huang, "A 0.18nJ/Matrix QR decomposition and Lattice Reduction Processor for $8{\times}8$ MIMO Preprocessing," Proc. Asian Solid-State Circuits Conf. pp. 161-164. Nov. 2013.