• Title/Summary/Keyword: 선형 판별 분석

Search Result 194, Processing Time 0.021 seconds

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

Filter Selection Method Using CSP and LDA for Filter-bank based BCI Systems (필터 뱅크 기반 BCI 시스템을 위한 CSP와 LDA를 이용한 필터 선택 방법)

  • Park, Geun-Ho;Lee, Yu-Ri;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.197-206
    • /
    • 2014
  • Motor imagery based Brain-computer Interface(BCI), which has recently attracted attention, is the technique for decoding the user's voluntary motor intention using Electroencephalography(EEG). For classifying the motor imagery, event-related desynchronization(ERD), which is the phenomenon of EEG voltage drop at sensorimotor area in ${\mu}$-band(8-13Hz), has been generally used but this method are not free from the performance degradation of the BCI system because EEG has low spatial resolution and shows different ERD-appearing band according to users. Common spatial pattern(CSP) was proposed to solve the low spatial resolution problem but it has a disadvantage of being very sensitive to frequency-band selection. Discriminative filter bank common spatial pattern(DFBCSP) tried to solve the frequency-band selection problem by using the Fisher ratio of the averaged EEG signal power and establishing discriminative filter bank(DFB) which only includes the feature frequency-band. However, we found that DFB might not include the proper filters showing the spatial pattern of ERD. To solve this problem, we apply a band-selection process using CSP feature vectors and linear discriminant analysis to DFBCSP instead of the averaged EEG signal power. The filter selection results and the classification accuracies of the existing and the proposed methods show that the CSP feature is more effective than signal power feature.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

A Study on Recognition of Both of PCA and LAD Using Types of Vehicle Plate (PCA와 LDA을 이용한 차량 번호판 통합 인식에 관한 연구)

  • Lee, Jin-Ki;Kim, Hyun-Yul;Lee, Seung-Kyu;Lee, Geon-Wha;Park, Yung-Rok;An, Ki-Nam;Bae, Cheol-Su;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.6-17
    • /
    • 2013
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Analytical Properties of Electron Spin Resonance after Irradiation of Seasonings with Different Radiation Sources (조미료의 방사선 조사선원에 따른 전자스핀공명 분석 특성)

  • Ahn, Jae-Jun;Kim, Gui-Ran;Jin, Qiong-Wen;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.385-391
    • /
    • 2009
  • Analytical electron spin resonance (ESR) parameters were investigated in irradiated seasonings after exposure to different radiation sources. Two commercial seasonings (SS-1 and SS-2) were irradiated with 0.20 kGy under ambient conditions using a $^{60}Co$ gamma-ray irradiator or an electron beam accelerator. Crystalline sugar-induced multi-component signals with g-values of 2.031, 2.021, 2.017, 2.009, 2.002, 1.990, and 1.980 were observed in both irradiated samples, whereas singlet signals were detected in non-irradiated materials, thereby distinguishing irradiated from control samples. Under the same analytical conditions, the ESR signal intensity of electron beam-irradiated samples was greater than that of gamma-irradiated materials. Determination coefficients (R2 values) between irradiation doses and corresponding ESR responses were 0.9916-0.9973 for all samples, and the magnetic field of specified g-values for irradiated samples remained constant. The predominant ESR signals of g2 (2.021), g4 (2.009), g5 (2.002), and g6 (1.990) showed high correlations with the corresponding irradiation doses (R2=0.8243 - 0.9929).

Analytical Characteristics of Electron Spin Resonance for Identifying Irradiated Ramen Soup with Radiation Sources (방사선 조사된 라면수프의 조사선원에 따른 전자스핀공명 분석특성)

  • Ahn, Jae-Jun;Lee, Ju-Woon;Chung, Hyung-Wook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.131-135
    • /
    • 2009
  • The identification characteristics of irradiated commercial Ramen soup were investigated depending on radiation sources and doses by electron spin resonance (ESR) spectroscopy. Two commercial powder soups (RS-1, RS-2) were irradiated at 0 to 20 kGy under ambient conditions by both a Co-60 gamma irradiator and an electron beam (EB) accelerator, respectively. Crystalline sugar-induced multi-component signals with g-values of 2.010/2.011, 2.006, 2.002 and 1.999 were detected in the irradiated Ramen soup (RS-1, RS-2), whereas $Mn^{2+}$ signals were observed in non-irradiated samples, thereby distinguishing each other. Under the same analytical conditions, the intensity of ESR signals was higher in EB-irradiated samples than the gamma-irradiated ones. Determination coefficients ($R^2$) between irradiation doses and corresponding ESR responses were above 0.9665 in all the samples, and the magnetic field of specified g-value remained constant. The predominant ESR signals of $g_2$ (2.010-2.011) and $g_3$ (2.002) increased with corresponding doses of irradiation ($R^2$= 0.9750-0.9981).

A Method of Machine Learning-based Defective Health Functional Food Detection System for Efficient Inspection of Imported Food (효율적 수입식품 검사를 위한 머신러닝 기반 부적합 건강기능식품 탐지 방법)

  • Lee, Kyoungsu;Bak, Yerin;Shin, Yoonjong;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.139-159
    • /
    • 2022
  • As interest in health functional foods has increased since COVID-19, the importance of imported food safety inspections is growing. However, in contrast to the annual increase in imports of health functional foods, the budget and manpower required for inspections for import and export are reaching their limit. Hence, the purpose of this study is to propose a machine learning model that efficiently detects unsuitable food suitable for the characteristics of data possessed by government offices on imported food. First, the components of food import/export inspections data that affect the judgment of nonconformity were examined and derived variables were newly created. Second, in order to select features for the machine learning, class imbalance and nonlinearity were considered when performing exploratory analysis on imported food-related data. Third, we try to compare the performance and interpretability of each model by applying various machine learning techniques. In particular, the ensemble model was the best, and it was confirmed that the derived variables and models proposed in this study can be helpful to the system used in import/export inspections.