DOI QR코드

DOI QR Code

Filter Selection Method Using CSP and LDA for Filter-bank based BCI Systems

필터 뱅크 기반 BCI 시스템을 위한 CSP와 LDA를 이용한 필터 선택 방법

  • Park, Geun-Ho (Department of Electrical and Computer Eng., Pusan National University) ;
  • Lee, Yu-Ri (Department of Electrical and Computer Eng., Pusan National University) ;
  • Kim, Hyoung-Nam (Department of Electrical and Computer Eng., Pusan National University)
  • 박근호 (부산대학교 전자전기컴퓨터공학과) ;
  • 이유리 (부산대학교 전자전기컴퓨터공학과) ;
  • 김형남 (부산대학교 전자전기컴퓨터공학과)
  • Received : 2014.03.10
  • Accepted : 2014.04.29
  • Published : 2014.05.25

Abstract

Motor imagery based Brain-computer Interface(BCI), which has recently attracted attention, is the technique for decoding the user's voluntary motor intention using Electroencephalography(EEG). For classifying the motor imagery, event-related desynchronization(ERD), which is the phenomenon of EEG voltage drop at sensorimotor area in ${\mu}$-band(8-13Hz), has been generally used but this method are not free from the performance degradation of the BCI system because EEG has low spatial resolution and shows different ERD-appearing band according to users. Common spatial pattern(CSP) was proposed to solve the low spatial resolution problem but it has a disadvantage of being very sensitive to frequency-band selection. Discriminative filter bank common spatial pattern(DFBCSP) tried to solve the frequency-band selection problem by using the Fisher ratio of the averaged EEG signal power and establishing discriminative filter bank(DFB) which only includes the feature frequency-band. However, we found that DFB might not include the proper filters showing the spatial pattern of ERD. To solve this problem, we apply a band-selection process using CSP feature vectors and linear discriminant analysis to DFBCSP instead of the averaged EEG signal power. The filter selection results and the classification accuracies of the existing and the proposed methods show that the CSP feature is more effective than signal power feature.

운동심상(Motor imagery) 기반의 뇌-컴퓨터 인터페이스(Brain-computer Interface)는 주로 뇌전도(Electroencephalography, EEG)를 이용하여 사용자의 자발적인 운동 의지를 읽는 기술로 최근 주목받고 있다. 이 중에서도 피실험자의 운동 의지를 정확히 해석하기 위해 감각운동 영역(sensorimotor area)의 일부분에서 나타나는 ${\mu}$-대역(8-13Hz)의 전위 감소 현상인 event related desynchronization(ERD)을 분석하는 연구가 많이 진행되고 있다. 하지만 EEG는 공간 해상도가 낮고 사용자에 따라 ERD가 발생하는 주파수 대역이 다소 차이가 있어 추정에 어려움이 있다. 이에 대한 개선 방법의 하나로서 공간 필터를 구현하는 common spatial pattern (CSP)과 필터 뱅크(filter bank)를 결합한 형태인 discriminative filter bank common spatial pattern(DFBCSP)이 제안되었다. 그러나 DFBCSP는 EEG 신호의 평균 전력(power)의 Fisher ratio를 이용하여 사용자에 따른 효과적인 주파수 대역을 포함하는 discriminative filter bank(DFB)를 구성하여 분류 정확도를 향상시켰지만 ERD의 공간 패턴이 나타나는 적절한 필터를 선택하지 않는 경우가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 EEG 신호의 평균전력 대신 CSP의 특성 벡터를 이용하여 DFB를 구성하는 방법을 제안한다. 기존의 방법과 제안한 방법의 필터 선택 결과와 분류 정확도 분석을 통해 CSP 특성 벡터가 DFB 구성에 더욱 효과적임을 보인다.

Keywords

References

  1. S. Sanei, Adaptive processing of brain signals, John Wiley & Sons Ltd, pp. 295-296, 2013.
  2. C. Wang, B. Xia, et al, "Motor Imagery BCI-based robot arm system," in Proc. 7th Int. Conf. Natural Computation. (ICNC), July 2011, pp. 181-184.
  3. C. Wang, et al, "A Feasibility Study of Non-Invasive Motor-Imagery BCI-based Robotic Rehabilitation for Stroke Patients," in Proc. 4th Int. Conf. Neural Eng., IEEE Eng. Med. Biol. Soc. (EMBS), April-May 2009, pp. 271-274.
  4. R. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, C. Laugier, and M. H. Ang Jr., "Controlling a Wheelchair Indoors Using Thought," IEEE Intelligent Systems, vol. 22, no. 2, pp. 18-24, 2007.
  5. L. Bonnet, F. Lotte, A. Lecuyer, "Two Brains, One Game: Design and Evaluation of a Multiuser BCI Video Game Based on Motor Imagery," IEEE Trans. Computational Intelligence and AI in Games, vol. 5, no. 2, June 2013.
  6. G. Pfurtscheller, C. Neuper, "Motor imagery activates primary sensorimotor area in humans," Neuroscience Letters, vol. 239, no. 2-3, pp. 65-68, Dec 1997. https://doi.org/10.1016/S0304-3940(97)00889-6
  7. R. Srinivasan, "Methods to Improve the Spatial Resolution of EEG," International Journal of Bioelectromagnetism, vol. 1, no. 1, pp. 102-111, 1999.
  8. G. Pfurtscheller, and F. H. Lopes da Silva, "Event-related EEG/MEG synchronization and desynchronization: basic principles," Clinical Neurophysiology, vol. 110, no. 11, pp. 1842-1857, Nov. 1999. https://doi.org/10.1016/S1388-2457(99)00141-8
  9. H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, "Optimal Filtering of Single Trial EEG During Imagined Hand Movement," IEEE Trans. Rehab. Eng., vol 8, no. 4, pp. 441-446, Dec. 2000. https://doi.org/10.1109/86.895946
  10. Z. J. Koles, "The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG," Electroencephalography and clinical Neurophysiology, vol. 79, no. 6, pp. 440-447, 1991. https://doi.org/10.1016/0013-4694(91)90163-X
  11. Q. Novi, C. Guan, T. H. Dat, and P. Xue, "Sub-band common spatial pattern for brain-computer interface," in Proc. 3rd Int. Conf. Neural Eng. IEEE Eng. Med. Biol. Soc. (EMBS), May 2007, pp. 204-207.
  12. K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, "Filter bank common spatial pattern (FBCSP) in brain-computer interface," in Proc. IEEE Int Joint Conf. Nerual Netw., Jun 2008, pp. 2390-2397.
  13. K. Thomas, C. Guan, C. Lau, A. Vinod and K. Ang, "A new discriminative common spatial pattern method for motor imagery brain-computer interfaces," IEEE Trans. Biomed. Eng., vol. 56, no. 11, pp. 2730-2733, Nov. 2009. https://doi.org/10.1109/TBME.2009.2026181
  14. F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche and B. Arnaldi, "A review of Classification Algorithms for EEG-based Brain-computer Interfaces," Journal of Neural Engineering 4 (2007).
  15. R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, John Wiley & Sons Inc, pp. 117-121, 2001.
  16. B. Blankertz, KR Muller, et al, "The BCI competition III: validating alternative approaches to actual BCI problems," IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 14, no. 2, pp. 153-159, Jun. 2006. https://doi.org/10.1109/TNSRE.2006.875642