Analytical Properties of Electron Spin Resonance after Irradiation of Seasonings with Different Radiation Sources

조미료의 방사선 조사선원에 따른 전자스핀공명 분석 특성

  • Ahn, Jae-Jun (Department of Food Science & Technology, Kyungpook National University) ;
  • Kim, Gui-Ran (Department of Food Science & Technology, Kyungpook National University) ;
  • Jin, Qiong-Wen (Department of Food Science & Technology, Kyungpook National University) ;
  • Kwon, Joong-Ho (Department of Food Science & Technology, Kyungpook National University)
  • Published : 2009.06.30

Abstract

Analytical electron spin resonance (ESR) parameters were investigated in irradiated seasonings after exposure to different radiation sources. Two commercial seasonings (SS-1 and SS-2) were irradiated with 0.20 kGy under ambient conditions using a $^{60}Co$ gamma-ray irradiator or an electron beam accelerator. Crystalline sugar-induced multi-component signals with g-values of 2.031, 2.021, 2.017, 2.009, 2.002, 1.990, and 1.980 were observed in both irradiated samples, whereas singlet signals were detected in non-irradiated materials, thereby distinguishing irradiated from control samples. Under the same analytical conditions, the ESR signal intensity of electron beam-irradiated samples was greater than that of gamma-irradiated materials. Determination coefficients (R2 values) between irradiation doses and corresponding ESR responses were 0.9916-0.9973 for all samples, and the magnetic field of specified g-values for irradiated samples remained constant. The predominant ESR signals of g2 (2.021), g4 (2.009), g5 (2.002), and g6 (1.990) showed high correlations with the corresponding irradiation doses (R2=0.8243 - 0.9929).

시판 혼합조미료(SS-1, SS-2)를 시료로 하여 조사선원(감마선, 전자선) 및 조사선량(0-20 kGy)에 따른 ESR spectrum의 특성을 비교하고, 방사선조사 유래의 signal에 대한 parameter를 분석하여 조사여부 판별을 뒷받침하는 자료를 확인하였다. 그 결과, 방사선 조사된 조미료 시료에서는 조사선원에 상관없이 특이한 free radical의 ESR signal을 보여주었다. 이 signal은 g-value가 2.031, 2.021, 2.017, 2.009, 2.002, 1.990 및 1.980인 크고 작은 7개의 peak를 지닌 crystalline sugar 유래의 multicomponent radical로 확인되었다. 그러나 방사선 처리되지 않은 두 시료(SS-1, SS-2)는 모두 매우 낮은 강도의 singlet line의 형태의 spectrum을 나타내어 비조사구와 조사구의 구별이 분명하였다. 조사선원과 선량에 따른 signal intensity를 비교한 결과, 동일한 측정조건에서 모든 조사선량에서 전자선 시료가 감마선시료보다 더 높은 강도를 나타내었으며, 조사선량의 증가에 따라 선형적으로 증가하였다($R^2=0.9916{\sim}0.9973$). 두 시료에서 방사선 조사 유래의 spectra는 조사선원 및 조사선량에 관계없이 g-value와 signal을 나타내는 자장영역은 거의 일정하였으며, 주요 signals($g_2=2.021$, $g_4=2.009$, $g_5=2.002$, $g_6=1.990$)의 강도 역시 조사선량에 따라 증가하였다($R^2=0.8243{\sim}0.9929$).

Keywords

References

  1. FAO/WHO CODEX STAN. (2003) General Codex Methods for the Detection of Irradiated Foods, CODEX STAN 231-2001, Rev.1
  2. IAEA. (1991) Analytical detection methods for irradiated foods. A review of current literature. IAEA-TECDOC- 587, p.172
  3. Gordy, W., Ard, W.B. and Shields, H. (1955) Microwave spectroscopy of biological substances: Paramagnetic resonance in X-irradiated amino acids and proteins. Proc. Natl. Acad. Sci. USA, 41, 983–996 https://doi.org/10.1073/pnas.41.11.983
  4. CEN. (2000) Detection of irradiated food irradiated food containing cellulose, method by ESR spectroscopy. European Committee for Standard. English version of EN 1787, Brussels
  5. CEN. (2001) Detection of irradiated food irradiated food containing crystalline sugar, method by ESR spectroscopy. European Committee for Standard. English version of EN 13708, Brussels
  6. CEN. (1996) Detection of irradiated food irradiated food containing bone, method by ESR spectroscopy. European Committee for Standard. English version of EN 1786, Brussels
  7. Webster's Third New International Dictionary. (1966) G&C Merriam Co., Chicago, U.S.A., p.2193
  8. KFDA. (2008) Korea Food Standard Code. Korea Food & Drug Administration, Seoul, Korea, p.5-21-1-5-21-10
  9. Johnston, D.E. and Stevenson, M.H. (1990) Food irradiation and the chemist. Royal society of chemistry,Queen's University, Belfast, U.K., Special Publication No. 86, p.90-92
  10. IAEA. (2008) International Atomic Energy Agency homepage. http://nucleus.iaea.org/NUCLEUS /nucleus/Content/Applications/FICdb/FoodIrradationclearances.jsp?module=cif, Accessed on July 5
  11. Kwon, J.H., Kim, M.Y., Kim, B.K., Lee, J.E., Kim, D.H., Lee, J.W., Byun, M.W. and Lee, C.B. (2006) Identification characteristics of irradiated dried-spicy vegetables by analuzing photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR). Korean J. Food Preserv., 13, 50-54
  12. Kwon, J.H., Kim, M.Y., Kim, B.K., Chung, H.W., Kim, T.C. and Kim, S.J. (2006) The detection of irradiated composite seasoning foods by analyzing photostimulated luminescence (PSL), electron spin resonance (ESR) and thermoluminescence (TL). Korean J. Food Preserv., 13, 55-56
  13. Origin (1999) Origin Tutorial Manual, version 6.0, Microcal Software, Inc., Northampton, MA., U.K., p.20-45
  14. SAS (1998) SAS User`s Guide Statistics, 3rd ed., Statistical Analysis System Institute Inc., Cary, NC, U.S.A.
  15. Desrosiers, M.F. (1989) Gamma-irradiated sea foods:Identification and dosimetry by electron paramagnetic resonance spectroscopy. J. Agric. Food Chem., 37, 96-100 https://doi.org/10.1021/jf00085a022
  16. Desrosiers, M.F. and Simic, M.G. (1988) Post-irradiation dosimetry of meat by electron spin resonance spectroscopy of bones. J. Agric. Food Chem., 36, 601-603 https://doi.org/10.1021/jf00081a049
  17. De Jusus, E.F.O., Rossi, A.M. and Lopes, R.T. (2000) Identification and dose determination using ESR measurements in the flesh of irradiated vegetable products. Appl. Radiat. Isotopes, 52, 1375-1383 https://doi.org/10.1016/S0969-8043(00)00098-1
  18. Johnston, D.E. and Stevenson, M.H. (1990) Food irradiation and the chemist. Royal society of chemistry, Queen's University, Belfast, U.K., Special Publication No. 89-90
  19. Estevesa, M.P., Andradeb, M.E. and Empisc, J. (1999) Detection of prior irradiation of dried fruits by electron spin resonance (ESR). Radiat. Phys. Chem., 55, 737-742 https://doi.org/10.1016/S0969-806X(99)00304-7
  20. IAEA. (1982) Training Manual on Food Irradiation Technology and Techniques. 2nd ed., Technical Reports Series No. 114, International Atomic Energy Agency, Vienna, p.112-132
  21. Ghelawi, M.A., Moore, J.S., Bisby, R.H. and Dodd, N.J.F.(2001) Estimation of absorbed dose in irradiated dates(Phoenix dactylifera L.). Test of ESR response function by a weighted linear least-squares regression analysis. Radiat. Phys. Chem., 60, 143-147 https://doi.org/10.1016/S0969-806X(00)00309-1