적어도 2,500년 전에 기원된 바둑은 세상에서 가장 오래된 보드 게임 중의 하나이다. 아직까지 포석 바둑에 대한 이론적 연구는 여전히 미흡하다. 본 연구는 특정 프로기사의 포석을 갖고 훈련용 포석으로부터 얻어낸 클래스로의 인식을 위해 전통적인 선형판별분석 알고리즘을 적용하였다. 상위 10위권 한국 프로기사의 포석을 갖고 클래스-독립 선형판별분석과 클래스-종속 선형판별분석을 수행하였다. 실험 결과 클래스-독립 LDA는 평균 14%의 인식률을, 클래스-종속 LDA는 평균 12%의 인식률을 각각 보였다. 또한 연구 결과 일반적인 상식과 달리 PCA가 LDA보다 더 우월하고, 유클리디언 거리 측정 방식이 결코 LDA보다 뒤지지 않는다는 새로운 사실이 밝혀졌다.
이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.
부류안 분산 행렬의 특이성 때문에 선형 판별 분석은 작은 표본 크기 문제에 쓰기에 알맞지 않다. 이에 선형 판별 분석을 확장하여 작은 표본 크기 문제에서 좋은 성능을 갖는 영 공간 기반 선형 판별 분석이 제안되었다. 이 논문에서는 라그랑지 기법을 바탕으로 하여, 영 공간 기반 선형 판별 분석을 써서 특징을 추출하는 문제를 선형 방정식 문제로 바꾸는 과정을 제안하였다.
얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.
본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안하고자 한다. 제안된 기법은 우선 주기별로 실험에 의해 측정된 전류값의 입력차원을 주성분분석기법을 이용하여 축소한 후 선형판별분석기법을 이용하여 고장상태별로 특징벡터를 추출한다. 다음으로 진단단계는 확보된 고장 종류별 특징벡터와 운전 시 입력되는 특징벡터간의 유클리디안 거리를 이용하여 유도전동기의 운전상태를 진단하는 구조로 되어있다. 마지막으로 선형판별분석기법의 타당성을 보이기 위해 노이즈가 있는 다양한 조건하에서 실험한 결과, 주성분분석기법만을 이용한 경우보다 우수한 결과를 나타냈다.
선형판별분석(LDA) 기법은 특징벡터의 차원을 줄이거나 클래스 식별에 이용되는 통계적 분석 방법이다. 그러나 선형 분리가 불가능한 데이터 집합의 경우에는 비선형 함수를 이용하여 특징벡터를 고차원의 공간으로 사상(mapping) 시켜줌으로써 선형 분리가 가능하도록 만들 수 있는데, 이러한 기법을 일반화된 판별분석(GDA) 또는 커널판별분석(KDA) 기법이라고 한다. 본 연구에서는 인터넷에 공개되어 있는 능동소나 표적신호에 LDA 및 GDA 기법을 이용하여 표적식별 실험을 수행하고, 그 결과를 비교/분석하였다. 실험 결과 104개의 테스트 데이터에 대해 LDA 기법으로는 73.08% 인식률을 얻었으나 GDA 기법으로는 95.19%로 기존의 MLP 또는 커널 기반 SVM에 비해 나은 성능을 보였다.
본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 상호정보량과 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 유효 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 선형판별분석기법을 적용하여 고장상태별 특징들을 추출한 후 k-NN 분류기에 의해 유도전동기의 상태를 진단하게 된다. 제안된 방법의 타당성을 보이기 위해 다양한 조건하에서 실험한 결과 기존방법에 비하여 우수한 결과를 나타냈다.
본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.
심전도 신호는 기본적으로 심장의 전기적 활동에 포함되며 이를 통해 심박수 측정, 심장 박동의 리듬 검사, 심장 이상 진단, 정서 인식 및 생체 인식과 같은 다양한 목적으로 분석 및 활용된다. 본 논문의 목적은 다차원 데이터 배열인 텐서 특성을 가진 다선형 판별분석(MLDA: Multilinear Linear Discriminant Analysis) 기법을 이용하여 개인식별을 수행하고자 한다. MLDA는 상위 차원의 텐서를 포함하는 분류 문제에 대해서 차원 문제를 해결 할 수 있으며, 상호 연관된 부분 공간은 서로 다른 클래스를 구별하기 위해 사용될 수 있다. 제시된 방법의 성능을 검증하기 위해 Physionet의 MIT-BIH데이터베이스를 적용하였다. 이 데이터베이스에 대해 실험한 결과, MLDA는 기존 PCA와 LDA와 비교하여 개인식별 성능이 우수함을 확인하였다.
생체 특징 중에서 서명은 취득 시마다 환경이나 감정변화에 따라 동일인이라 하더라도 서명간에 변이가 존재하며 그 변이특성이 지문과 홍채와 같은 다른 생체 특징보다 크게 나타난다. 따라서, 본 논문에서는 주성분분석기법과 선형판별기법을 이용하여 서명 변이에도 강인한 서명 검증 기법을 제안한다. 제안한 방법은 서명 변화에 대한 영향을 최소화하기 위해 서명을 새로운 격자분할 방식에 의해 수직축과 수평축으로 투영시켰다. 투영된 서명은 주성분분석(PCA) 기법과 선형판별분석(LDA) 기법을 이용하여 각각의 서명에 대한 특징을 산출한 후 서명검증을 하였다. 제안된 서명검증 알고리즘의 타당성을 검토하기 위해 실험한 결과, 오거부율이 약 1.45%일 때 오인식률이 2.1% 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.