• 제목/요약/키워드: 선형 판별 분석(LDA)

검색결과 66건 처리시간 0.016초

한국 프로바둑기사 포석 인식을 위한 선형판별분석과 주성분분석 비교 (Comparison of LDA and PCA for Korean Pro Go Player's Opening Recognition)

  • 이병두
    • 한국게임학회 논문지
    • /
    • 제13권4호
    • /
    • pp.15-24
    • /
    • 2013
  • 적어도 2,500년 전에 기원된 바둑은 세상에서 가장 오래된 보드 게임 중의 하나이다. 아직까지 포석 바둑에 대한 이론적 연구는 여전히 미흡하다. 본 연구는 특정 프로기사의 포석을 갖고 훈련용 포석으로부터 얻어낸 클래스로의 인식을 위해 전통적인 선형판별분석 알고리즘을 적용하였다. 상위 10위권 한국 프로기사의 포석을 갖고 클래스-독립 선형판별분석과 클래스-종속 선형판별분석을 수행하였다. 실험 결과 클래스-독립 LDA는 평균 14%의 인식률을, 클래스-종속 LDA는 평균 12%의 인식률을 각각 보였다. 또한 연구 결과 일반적인 상식과 달리 PCA가 LDA보다 더 우월하고, 유클리디언 거리 측정 방식이 결코 LDA보다 뒤지지 않는다는 새로운 사실이 밝혀졌다.

선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식 (Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers)

  • 오병주
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.41-48
    • /
    • 2005
  • 이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.

  • PDF

라그랑지 기법을 쓴 영 공간 기반 선형 판별 분석법의 변형 기법 (Transformation Technique for Null Space-Based Linear Discriminant Analysis with Lagrange Method)

  • 호우위시;민황기;송익호;최명수;박선;이성로
    • 한국통신학회논문지
    • /
    • 제38C권2호
    • /
    • pp.208-212
    • /
    • 2013
  • 부류안 분산 행렬의 특이성 때문에 선형 판별 분석은 작은 표본 크기 문제에 쓰기에 알맞지 않다. 이에 선형 판별 분석을 확장하여 작은 표본 크기 문제에서 좋은 성능을 갖는 영 공간 기반 선형 판별 분석이 제안되었다. 이 논문에서는 라그랑지 기법을 바탕으로 하여, 영 공간 기반 선형 판별 분석을 써서 특징을 추출하는 문제를 선형 방정식 문제로 바꾸는 과정을 제안하였다.

포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식 (Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.64-69
    • /
    • 2008
  • 얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.

선형판별분석기법을 이용한 유도전동기의 고장진단 (Fault Diagnosis of Induction Motor using Linear Discriminant Analysis)

  • 전병석;이상혁;박장환;유정웅;전명근
    • 조명전기설비학회논문지
    • /
    • 제18권4호
    • /
    • pp.104-111
    • /
    • 2004
  • 본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안하고자 한다. 제안된 기법은 우선 주기별로 실험에 의해 측정된 전류값의 입력차원을 주성분분석기법을 이용하여 축소한 후 선형판별분석기법을 이용하여 고장상태별로 특징벡터를 추출한다. 다음으로 진단단계는 확보된 고장 종류별 특징벡터와 운전 시 입력되는 특징벡터간의 유클리디안 거리를 이용하여 유도전동기의 운전상태를 진단하는 구조로 되어있다. 마지막으로 선형판별분석기법의 타당성을 보이기 위해 노이즈가 있는 다양한 조건하에서 실험한 결과, 주성분분석기법만을 이용한 경우보다 우수한 결과를 나타냈다.

일반화된 판별분석 기법을 이용한 능동소나 표적 식별 (Sonar Target Classification using Generalized Discriminant Analysis)

  • 김동욱;김태환;석종원;배건성
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.125-130
    • /
    • 2018
  • 선형판별분석(LDA) 기법은 특징벡터의 차원을 줄이거나 클래스 식별에 이용되는 통계적 분석 방법이다. 그러나 선형 분리가 불가능한 데이터 집합의 경우에는 비선형 함수를 이용하여 특징벡터를 고차원의 공간으로 사상(mapping) 시켜줌으로써 선형 분리가 가능하도록 만들 수 있는데, 이러한 기법을 일반화된 판별분석(GDA) 또는 커널판별분석(KDA) 기법이라고 한다. 본 연구에서는 인터넷에 공개되어 있는 능동소나 표적신호에 LDA 및 GDA 기법을 이용하여 표적식별 실험을 수행하고, 그 결과를 비교/분석하였다. 실험 결과 104개의 테스트 데이터에 대해 LDA 기법으로는 73.08% 인식률을 얻었으나 GDA 기법으로는 95.19%로 기존의 MLP 또는 커널 기반 SVM에 비해 나은 성능을 보였다.

유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템 (Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis)

  • 이대종;조재훈;윤종환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.380-387
    • /
    • 2010
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 상호정보량과 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 유효 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 선형판별분석기법을 적용하여 고장상태별 특징들을 추출한 후 k-NN 분류기에 의해 유도전동기의 상태를 진단하게 된다. 제안된 방법의 타당성을 보이기 위해 다양한 조건하에서 실험한 결과 기존방법에 비하여 우수한 결과를 나타냈다.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

심전도 신호기반 개인식별을 위한 텐서표현의 다선형 판별분석기법 (A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification)

  • 임원철;곽근창
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.90-98
    • /
    • 2018
  • 심전도 신호는 기본적으로 심장의 전기적 활동에 포함되며 이를 통해 심박수 측정, 심장 박동의 리듬 검사, 심장 이상 진단, 정서 인식 및 생체 인식과 같은 다양한 목적으로 분석 및 활용된다. 본 논문의 목적은 다차원 데이터 배열인 텐서 특성을 가진 다선형 판별분석(MLDA: Multilinear Linear Discriminant Analysis) 기법을 이용하여 개인식별을 수행하고자 한다. MLDA는 상위 차원의 텐서를 포함하는 분류 문제에 대해서 차원 문제를 해결 할 수 있으며, 상호 연관된 부분 공간은 서로 다른 클래스를 구별하기 위해 사용될 수 있다. 제시된 방법의 성능을 검증하기 위해 Physionet의 MIT-BIH데이터베이스를 적용하였다. 이 데이터베이스에 대해 실험한 결과, MLDA는 기존 PCA와 LDA와 비교하여 개인식별 성능이 우수함을 확인하였다.

PCA와 LDA를 이용한 오프라인 서면 검증 (An Off-line Signature Verification Using PCA and LDA)

  • 류상연;이대종;고현주;전명근
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.645-652
    • /
    • 2004
  • 생체 특징 중에서 서명은 취득 시마다 환경이나 감정변화에 따라 동일인이라 하더라도 서명간에 변이가 존재하며 그 변이특성이 지문과 홍채와 같은 다른 생체 특징보다 크게 나타난다. 따라서, 본 논문에서는 주성분분석기법과 선형판별기법을 이용하여 서명 변이에도 강인한 서명 검증 기법을 제안한다. 제안한 방법은 서명 변화에 대한 영향을 최소화하기 위해 서명을 새로운 격자분할 방식에 의해 수직축과 수평축으로 투영시켰다. 투영된 서명은 주성분분석(PCA) 기법과 선형판별분석(LDA) 기법을 이용하여 각각의 서명에 대한 특징을 산출한 후 서명검증을 하였다. 제안된 서명검증 알고리즘의 타당성을 검토하기 위해 실험한 결과, 오거부율이 약 1.45%일 때 오인식률이 2.1% 결과를 보였다.