• Title/Summary/Keyword: 선형 순정

Search Result 13, Processing Time 0.038 seconds

Direct Fairing for Geometric Modeling of Hull Surface (선형의 기하학적 모델링을 위한 직접순정법에 관한 연구)

  • W.D. Kim;J.H. Nam;K.W. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • When a geometric modeling of a hull form for ship design and hull production is done, a hull fairing is a tedious process which wastes a lot of time, but it is unavoidable because hull consist of the sculptured surfaces. This paper presents the mathematical method of the direct fairing to overcome the tediousness of cross fairing. Bi-cubic B-spline surface description was adopted for the representation of the hull surface. The fairing process was executed by minimizing the strain energy in a shell plate. The color-encoded Gaussian curvature and strain energy were visualized on the screen to illustrate the fairness of the surface. The geometric information generated from the faired hull surface model was interfaced with the basic design calculation package and the hull production system.

  • PDF

A Basic Study on the Fairing Method of Ship Hull Surface (선형의 순정 기법에 관한 기초 연구)

  • D.J. Kim;T.K. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.15-21
    • /
    • 1994
  • In the previous researches on mesh curve fairing method, a set of discrete data points in a mesh can be selected as variables. End tangent vectors can not be variables. This restriction makes some problems in preparing the end tangent vectors at the bow or stern parts, because their slopes are not infinites or zeros. In this paper end tangent vectors are included as variables and the more smooth results are obtained. Also two methods of constructing ship hull surface from mesh curves are examined. It is shown that the skinning method is better than non-uniform B-spline fitting method in representing the area near boundary. The generation of a ship surface is given as an example.

  • PDF

Definition of Ship Hull using $GC^1$ Surface ([$GC^1$] 곡면을 이용한 선형의 표현)

  • J.S. Park;D.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.32-40
    • /
    • 1994
  • This paper describes a smooth surface interpolating method of ship hull using a three-dimensional currie net that comes from the mesh curve fairing process. Geometric continuity(($GC^1$) is preserved across the boundary curve between patches. The three-dimensional curve net can have nonrectangular topologies, such as triangular and pentagonal topology. Among the boundary curve interpolation methods, Hermite blended Coons patch, Convex combination, and Gregory patch interpolation method are used to generate the ship hull surface. To check the fairness of the surface, the numerical method of surface/surface intersection problem is adopted. An application to an actual ship hull is given as an example.

  • PDF

Hull Fairing by Modified Direct Curvature Manipulation Method (개선된 직접 곡률 조작법을 이용한 선형의 순정)

  • Yoon, Tae-Kyeong;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.169-173
    • /
    • 1999
  • In this paper some modifications for Lu's inverse method of fairing process are presented. The object function is changed and additional constraints for hull curve foiling is proposed. The newly introduced minimizing object function is the sum of the distances between the two curve's positions at the same parameter values instead of the sum of the distances between two vertices. The new one is better to represent the physical meaning of the object function, the smaller differences between two curves. In ship hull fairing the end tangent of curve has to be fined in some cases, so the additional constraint is considered to preserve the direction of end tangent. The sample results are shown.

  • PDF

Hull Form Representation using a Hybrid Curve Approximation (혼합 곡선 근사법을 이용한 선형 표현)

  • Hyun-Cheol Kim;Kyung-Sun Lee;Soo-Young Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 1998
  • This paper presents the hybrid curve approximation with geometric boundary conditions as position vector and tangent vector of start and end point using a B-spline approximation and a genetic algorithm First, H-spline approximation generates control points to fit B-spline curries through specified data points. Second, these control points are modified by genetic algorithm(with floating point representation) under geometric boundary conditions. This method would be able to execute the efficient design work without fairing.

  • PDF

A Study on the Automatic Fairing and Modeling System of Hull From (선형의 자동순정 및 모델링 시스템에 관한 연구)

  • 김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • In this paper a new technique of inverse fairing problem for ship hull is proposed. Recently Lu solved the inverse fairing problem for automobile's body that was made by one surface element. In this system however hull surface is constructed by Gregory's composite surface interpolation method. So reflection line at boundary position is used as a tool of solving inverse problem in surface fairing. But the results are not good. The new concepts of Normal vector line and Constrained reflection line are introduced as an alternative tool. Energy minimization method for Normal Vector Line curve net and the inverse method for Constrained Reflection Line by using optimization technique are examined And the final lines from this proposed surface fairing method shows good fairness.

  • PDF

A Study on the Initial Hull Form Design by Using Form Parameters (형상계수에 의한 초기선형설계에 관한 연구)

  • Dong-Joon Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.24-29
    • /
    • 1993
  • This paper describes a method for generating an initial hull form by using form parameters. As a mathematical representation of curves, B-spline curves are used as well as the polynomials used by Durand et al. The five basic control curves and the centerline contour are defined to give the boundary conditions for body plan by using above mentioned mathematical models. From these curves body plan is determined. Two additional curves which are concerned the position of matching point between the cylindrical form and the water line are proposed to get the preliminary faired water lines.

  • PDF

A Unified Surface Modeling Technique Using a Bezier Curve Model (de Casteljau Algorithm) (베지에 곡선모델 (드 카스텔죠 알고리듬) 을 이용한 곡면 통합 모델링 기법)

  • Rhim, Joong-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.127-138
    • /
    • 1997
  • In this study, a new technique is presented, by which one can define ship hull form with full fairness from the input data of lines. For curve modeling, the de Casteljau Algorithm and Bezier control points are used to express free curves and to establish the unified curve modeling technique which enables one to convert non-uniform B-spline (NUB) curve or cubic spline curve into composite Bezier curves. For surface modeling, the mesh curve net which is required to define surface of ship hull form is interpolated by the method of the unified curve modeling, and the boundary curve segments of Gregory surface patches are generated by remeshing(rearranging) the given mesh curve net. From these boundary information, composite Gregory surfaces of good quality in fairness can be formulated.

  • PDF

A Study on the Hull Form Design System on the Basis of the Associative Geometry Objects (연관성 형상객체에 기초한 선형설계 전산시스템에 관한 연구)

  • Young-Bok Choi;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.105-115
    • /
    • 1999
  • To develope the best optimized hull form, it has been generalized to evaluate the preliminary hull forms with the CFD tools in the initial stage of development and for this process it is needed to prepare various competent hull forms with high degree of fairness. In this paper, a modified shape variation method was developed to maintain the shape and fairness of parent hull form and the automatic update procedure was implemented on the basis of the association concept. It was shown that the hull form of the high quality in fairness and shape inherited from the parent hull form can be archived.

  • PDF

Preliminary Hull Form Generation by Form Parameter Method using GA (GA를 이용한 Form parameter 방법에 의한 초기선형 생성)

  • Kim, Su-Young;Shin, Sung-Chul;Shin, KYoung-Yup
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • In order to generate hull form, fairness criteria applies to object function, B-spline curve vertices are considered as design variables, optimization is proceeded with satisfying geometric constraint conditions. GA(Genetic Algorithm) and optimality criteria apply to optimization process in this study.