• Title/Summary/Keyword: 선형대수방정식

Search Result 73, Processing Time 0.021 seconds

Curvature Linear Equation of a Coma Corrected Two-Mirror System with Finite Object Distance (유한 물체거리를 갖는 코마수차가 보정된 2 반사경계의 곡률선형방정식)

  • Hwang, Seok-Ju;Rim, Cheon-Seog;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2007
  • We derived analytically the generalized curvature linear equation useful in the initial optical design of a two-mirror system with finite object distance, including an infinite object distance from paraxial ray tracing and Seidel third order aberration theory for coma coefficient. These aberration coefficients for finite object distance were described by the curvature, the inter-mirror distance, and the effective focal length. The analytical equations were solved by using a computer with a numerical analysis method. Two useful linear relationships, determined by the generalized curvature linear equations relating the curvatures of the two mirrors, for the cancellation of each aberration were shown in the numerical solutions satisfying the nearly zero condition ($<10^{-10}$) for each aberration coefficient. These equations can be utilized easily and efficiently at the step of initial optical design of a two-mirror system with finite object distance.

베인 선단부의 탄성 유체 윤활

  • 정석훈;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.57-62
    • /
    • 1992
  • 탄성 유체 윤활은 윤활 표면의 탄성변형이 중요하게 다뤄지는 윤활의 형태로, 주로 로울러 베어링이나 기어와 같이 선접촉 집중하중을 받는 기계요소와 관련이 많다고 할 수 있다. 역사적으로 볼때 탄성 유체 윤활은 20 세기에 들어서 윤활 분야에서 획기적인 발전을 해온 것 중의 하나라고 볼 수 있으며, 윤활상태의 폭넓은 해석 뿐만아니라 전에는 고려하지 못했던 큰하중을 받는 기계요소들에 대한 윤활상태를 규명하는데 지대한 역할을 할 수 있음을 시사하고 있다. 한편 오래전 부터 실험적으로 탄성유체윤활을 해석함에 있어서 우선 고전적인 Reynolds 윤활 방정식에 윤활제의 유성특성인 고압하에서의 점성의 압력 의존성이 대단히 큰 피에조 점성효과를 고려하지 않으면 안된다. 나아가 등점도 조건하에서 재료의 탄성 변형을 함께 고려하여 연립 방정식의 형태로 구성해서 피에조 효과에서 발생하는 강한 비선형성을 갖는 대수 방정식의 해를 구하는 방안을 강구해야 한다.

  • PDF

심플렉틱 다양체의 불변량

  • 조용승
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.391-434
    • /
    • 2000
  • 심플렉틱 구조는 국소적으로는 모두 같기 때문에 심플렉틱 다양체 연구는 대역적으로 연구해야한다. 그로모브가 복소해석학적 곡선을 원소를 하는 모률라이 공간의 연구가 심플렉틱 다양체를 연구하는 물고를 텃다. 특이점이 없는 복소곡선의 개수를 세는 그로모브 불변량은 도넬슨의 비선형 게이지 이론의 간략화라 할 수 있는 아벨리안게이지 이론에서 사이버그-위튼 불변량과 같음을 타우브스가 발견하였다. 또한 사이버그-위튼 불변량은 심플렉틱 다양체의 불변량으로 심플렉틱 구조연구에 큰 이바지하고 있다. 그로모브의 모듈라이 공간의 컴펙트하는 과정에서 자연스럽게 마크점과 특이점을 갖는 곡선의 그로모브-위튼 모듈라이 공간이 켐펙트가 되고 여기소 그로모브-위튼 불변량이 얻어진다. 이 그로모브-위튼 불변량은 대수기하와 이론 물리학의 끈이론에서 찾는 대수곡선의 개수를 나타내고, 코호몰로지의 컵곱의 일반화라 할 수 있는 퀸텀곱을 유도하고, 그로모브-위튼 포텐셜함수의 계수를 결정한다. 퀸텀곱의 결합법칙은 포텐셜함수의 WDVV-방정식과 동치를 나타나며 이는 프로베니우스 구조가 평탄함을 나타낸다. 그로모브-위튼 불변량은 앞으로 활발히 연구되고 수학에 광범하게 이바지 할 것이다.

  • PDF

Identification of Time-invariant Parameters of Distributed Systems via Extended Block Pulse Operational Matrices (확장된 블록 펄스 연산 행렬을 이용한 분포정수계의 시불변 파라미터 추정)

  • Kim, Tae-Hoon;Lee, Seung;Kim, Jong-Boo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.82-88
    • /
    • 2001
  • This paper considers the problem of the identification of the time invariant parameters of distributed systems. In general, the parameters are identified by using the CBPOM(Conventional Block Pulse Operational Matrices), but in this paper, the parameters ard identified by using the EBPOMS(Extended Block Pulse Operational Matrices) which can reduce the burden of operation md the volume of error caused by matrices multiplication. The simulation cloves the effectiveness of the proposed method.

  • PDF

Estimating Diameter and Height Growth for Pinus densiflora S. et Z. Using Non-linear Algebraic Difference Equations (비선형(非線型) 대수차분(代數差分) 방정식(方程式)을 이용(利用)한 소나무 직경(直徑) 및 수고(樹高) 생장(生長) 추정(推定))

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • Pinus densiflora S. et Z. has widely been distributed, and is one of the important main foret resources in Korea. Diameter and height growth patterns were estimated using non-linear algebraic difference equation, which requires two-measurement times $T_1$ and $T_2$. To maximize data use, all possible measurement interval data were derived using Lag and Put statements in the SAS. In results, of the algebraic difference equations applied, the Schumacher and the Gompertz polymorphic equations for diameter and height, respectively showed the higher precision of the fitting. In order to allow more precise estimation of growth than those of the basic Schumacher and the Gompertz, further refinement that combine biological realism as input into the equation would be necessary.

  • PDF

Design Sensitivity Analysis and Optimization of Plane Arch Structures Using Variational Formulation (변분공식화를 이용한 2차원 아치 구조물의 설계민감도 해석 및 최적설계)

  • 최주호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.159-171
    • /
    • 2001
  • 평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Neighboring Optimal Control using Pseudospectral Legendre Method (Pseudospectral Legendre법을 이용한 근접 최적 제어)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • The solutions of neighboring optimal control are typically obtained using the sweep method or transition matrices. Due to the numerical integration, however, the gain matrix can become infinite as time go to final one in the transition matrices, and the Riccati solution can become infinite when the final time free. To overcome these disadvantages, this paper proposes the pseudospectral Legendre method which is to first discreteize the linear boundary value problem using the global orthogonal polynomial, then transforms into an algebraic equations. Because this method is not necessary to take any integration of transition matrix or Riccati equation, it can be usefully used in real-time operation. Finally, its performance is verified by the numerical example for the space vehicle's orbit transfer.

Development of an Adaptive e-Learning System for Engineering Mathematics using Computer Algebra and Bayesian Inference Network (컴퓨터 대수와 베이지언 추론망을 이용한 이공계 수학용 적응적 e-러닝 시스템 개발)

  • Park, Hong-Joon;Jun, Young-Cook
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.276-286
    • /
    • 2008
  • In this paper, we introduce an adaptive e-Learning system for engineering mathematics which is based on computer algebra system (Mathematica) and on-line authoring environment. The system provides an assessment tool for individual diagnosis using Bayesian inference network. Using this system, an instructor can easily develop mathematical web contents via web interface. Examples of such content development are illustrated in the area of linear algebra, differential equation and discrete mathematics. The diagnostic module traces a student's knowledge level based on statistical inference using the conditional probability and Bayesian updating algorithm via Netica. As part of formative evaluation, we brought this system into real university settings and analyzed students' feedback using survey.

Finite Element Analysis of the Neutron Transport Equation in Spherical Geometry (구형에서 중성자 수송방정식의 유한요소법에 의한 해석)

  • Kim, Yong-Ill;Kim, Jong-Kyung;Suk, Soo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 1992
  • The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation.

  • PDF