• Title/Summary/Keyword: 선하중 마찰력

Search Result 12, Processing Time 0.022 seconds

Application of New Edge-to-Edge Contact Algorithm to Discontinuous Deformation Analysis (불연속 변형해석에서의 새로운 선-선 접촉 해석 적용)

  • Lee Chung-In;Moon Young-Sam;Choi Yong-Keun;Ahn Tae-Young
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.305-315
    • /
    • 2005
  • DDA (Discontinuous Deformation Anlaysis) is one of the latest numerical analysis which has merits of both FEM and DEM. In this research a new edge-to-edge contact algorithm was applied on DDA. With adoption of new edge-to-edge contact state definition, sub-algorithm was improved about open-close iteration, contact state judge, contact detecting, and friction forces acting on joints. Newly applied DDA was verified based on two different cases. The DDA results show good agreement with numerically predicted one.

Fatigue Performance Evaluation of High-strength Bolt Used for Marine Transport Plant Structures (해상 운송 플랜트 구조물의 고장력 볼트 피로성능 평가)

  • So, Jaehyuk;Oh, Keunyeong;Park, Kwansik;Kim, Sun woo;Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • The offshore plant structure has been transported to the site by barge because it is hard to manufacture in site. When the structure was transported on the sea, offshore plant structures and connection were experienced repetitive submarine load. For this reason, it was known for that the axial force of high-strength bolted connection was declined. Therefore, in this study, high-strength bolted connection was evaluated the shear fatigue performance under longtime fatigue load during marine transport. The experimental variables were selected intial axial force, surface type, and bolt type because they ar important factors in the change of axial force of bolts. As a experimental results of considering various variables, the variation of axial force showed within 1%. Therefore, the high-strength bolted connection was verified structural safety under longtime fatigue load.

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles (강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안)

  • Kim, Do-Hyun;Park, Jong-Jeon;Chang, Yong-Chai;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.43-58
    • /
    • 2018
  • In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

Generalized Formula for Active Earth Pressure Estimation with Inclined Retaining Wall (점착력을 고려한 배면 경사 옹벽에서의 주동토압 산정 공식)

  • Kim, Woncheul;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • Active earth pressure formula, which can consider the effects of ground surface inclination, inclination of inside retaining wall face, wall friction, line load, uniform load, soil cohesion and adhesion, was derived based on the force equilibrium principle. In order to verify the accuracy of this proposed formula, the calculated active earth pressures by the proposed formula were compared with those of graphical solutions. Also, the active earth pressures determined by the proposed formula were compared with those by Coulomb's, Rankine's and Mazindrani's solution under specific conditions. The results matched quite well not only with the graphical solutions but also with those by three other methods. Also, the trend of active earth pressures by the proposed formula were corresponded with results of experimental study by Fang, et al. It can be concluded that this generalized formula not only can overcome the limitations of Rankine's, Coulomb's and Mazindrani's active earth pressure formula but also can consider the external loading conditions.

  • PDF

Load Transfer Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 하중전이 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Han, Shin-In;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • The load transfer mechanism of hybrid model of soil-nailing and compression anchor is studied in this paper. The hybrid model is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. It can make active behavior of skin friction by applying the pre-stress. In this paper, the load transfer mechanisms of soil-nailings, compression anchors, and hybrid models, respectively, are obtained from skin friction theory and load transfer theory. Field pullout tests are performed to identify the load transfer mechanism and experimental results are compared with analytical solution. In case of soil-nailings, the tension load is transferred from face to tip, however, in case of compression anchors, the compression load is transferred from tip to face. The experimental behavior of the hybrid model is similar to that of compression anchor when only pre-stress is applied. If the pullout test is performed by simultaneously pulling out the anchor and the nail, the compression load is dominant at the tip and tension load is dominant at the face. The load transfer mechanism of the hybrid model shows the combined behavior of soil-nailings with compression anchors.

Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces (강한 인장 상태에서의 계류 체인 링크의 휨 거동)

  • Kim, Seungjun;Won, Deok-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2017
  • This paper presents the study of the bending behavior of mooring chain links for keeping the position of the offshore floating structures. In general, chain links have been thought as the axial members due to the fundamental boundary condition. But, the flexural stiffness can be induced to the contact surface between chain links when friction occurs at the surface of the chain links due to high tensile force. Especially, the mooring chains for offshore floating platforms are highly tensioned. If the floater suffers rotational motion and the mooring chain links are highly tensioned, the rotation between contact links, induced by the floater rotation, generates the bending moment and relevant stresses due to the unexpected bending stiffness. In 2005, the mooring chain links for the Girassol Buoy Platform were failed after just 5 months after facility installation, and the accident investigation research concluded the chain failure was mainly caused by the fatigue due to the unexpected bending stress fluctuation. This study investigates the pattern of the induced bending stiffness and stresses of the highly tensioned chain links by nonlinear finite element analysis.

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

Stress-strain Behavior of Sand Reinforced with Geocell (지오셀로 보강된 모래의 응력-변형 거동)

  • Yoon, Yeo-Won;Kim, Jae-Youn;Kim, Bang-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.27-37
    • /
    • 2003
  • In this research stress-strain behavior of composite geocell-soil systems under triaxial condition and the influence of strength due to the presence of geocell were studied. For the research a series of triaxial tests were carried out on sand specimens confined by flexible-walled single rubber cell. The diameter of all rubber cells placed at the center of the soil sample were 50 mm. Three rubber sizes, i.e. 35, 50 and 70 mm height, were applied to the soil specimen and the size of soil specimen was 50 mm in diameter and 100 mm in height. Three different densities of soil were used for the tests. In general, it was observed that the sand specimen develops an apparent cohesion due to the confinement by the geocell. The magnitude of this cohesion seemed to be dependent to the properties of the geocell material. The test results have shown that the geocell material for this research not only develops the apparent cohesion but also increases the angle of friction whereas geosynthetic material in the references showed only the increase of apparent cohesion. From the application of geocell-soil composites to the hyperbolic model, it was recognized that the determination of the peak strength influences the behavior of the geocell-soil composites.

  • PDF

Development of an Empirical Equation for Estimating Lond Transfer Curve for Micropile in Weathered Soils (풍화지반에 근입된 마이크로파일의 하중전이곡선 추정을 위한 경험식 개발)

  • Park, Seong-Wan;Cho, Kook-Hwan;Roh, Kang-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Micropiles have been used for underpinning or rehabilitation of existing foundations, and direct structural support system as well. However, relatively few studies have been done on the load-transfer mechanism of micropile systems in Korea. In addition to that, only the limited information is available for estimating the side friction values on micropiles installed in weathered soils. In this study, a full-scale test on an instrumented micropile is performed in order to establish the load-transfer curves based on a hyperbolic function. Then, an empirically derived equation that correlates the load-transfer curve of micropiles with the N values from field standard penetration tests is proposed. The results from all procedures are presented in this paper. Finally, back analysis using a finite difference method and the published field data are adopted for examination of a developed skin friction equation of micropile in weathered soils respectively.

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF