• Title/Summary/Keyword: 선택적 압축 알고리즘

Search Result 91, Processing Time 0.027 seconds

Image Processing Using Multiplierless Binomial QMF-Wavelet Filters (곱셈기가 없는 이진수 QMF-웨이브렛 필터를 사용한 영상처리)

  • 신종홍;지인호
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.144-154
    • /
    • 1999
  • The binomial sequences are family of orthogonal sequences that can be generated with remarkable simplicity-no multiplications are necessary. This paper introduces a class of non-recursive multidimensional filters for frequency-selective image processing without multiplication operations. The magnitude responses are narrow-band. approximately gaussian-shaped with center frequencies which can be positioned to yield low-pass. band-pass. or high-pass filtering. Algorithms for the efficient implementation of these filters in software or in hardware are described. Also. we show that the binomial QMFs are the maximally flat magnitude square Perfect Reconstruction paraunitary filters with good compression capability and these are shown to be wavelet filters as well. In wavelet transform the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal direction and maintains constant the number of pixels required to describe the images. An efficient perfect reconstruction binomial QMF-Wavelet signal decomposition structure is proposed. The technique provides a set of filter solutions with very good amplitude responses and band split. The proposed binomial QMF-filter structure is efficient, simple to implement on VLSl. and suitable for multi-resolution signal decomposition and coding applications.

  • PDF

Human Visual Perception-Based Quantization For Efficiency HEVC Encoder (HEVC 부호화기 고효율 압축을 위한 인지시각 특징기반 양자화 방법)

  • Kim, Young-Woong;Ahn, Yong-Jo;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-41
    • /
    • 2017
  • In this paper, the fast encoding algorithm in High Efficiency Video Coding (HEVC) encoder was studied. For the encoding efficiency, the current HEVC reference software is divided the input image into Coding Tree Unit (CTU). then, it should be re-divided into CU up to maximum depth in form of quad-tree for RDO (Rate-Distortion Optimization) in encoding precess. But, it is one of the reason why complexity is high in the encoding precess. In this paper, to reduce the high complexity in the encoding process, it proposed the method by determining the maximum depth of the CU using a hierarchical clustering at the pre-processing. The hierarchical clustering results represented an average combination of motion vectors (MV) on neighboring blocks. Experimental results showed that the proposed method could achieve an average of 16% time saving with minimal BD-rate loss at 1080p video resolution. When combined the previous fast algorithm, the proposed method could achieve an average 45.13% time saving with 1.84% BD-rate loss.

Ciphering Scheme and Hardware Implementation for MPEG-based Image/Video Security (DCT-기반 영상/비디오 보안을 위한 암호화 기법 및 하드웨어 구현)

  • Park Sung-Ho;Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.27-36
    • /
    • 2005
  • This thesis proposed an effective encryption method for the DCT-based image/video contents and made it possible to operate in a high speed by implementing it as an optimized hardware. By considering the increase in the amount of the calculation in the image/video compression, reconstruction and encryption, an partial encryption was performed, in which only the important information (DC and DPCM coefficients) were selected as the data to be encrypted. As the result, the encryption cost decreased when all the original image was encrypted. As the encryption algorithm one of the multi-mode AES, DES, or SEED can be used. The proposed encryption method was implemented in software to be experimented with TM-5 for about 1,000 test images. From the result, it was verified that to induce the original image from the encrypted one is not possible. At that situation, the decrease in compression ratio was only $1.6\%$. The hardware encryption system implemented in Verilog-HDL was synthesized to find the gate-level circuit in the SynopsysTM design compiler with the Hynix $0.25{\mu}m$ CMOS Phantom-cell library. Timing simulation was performed by Verilog-XL from CadenceTM, which resulted in the stable operation in the frequency above 100MHz. Accordingly, the proposed encryption method and the implemented hardware are expected to be effectively used as a good solution for the end-to-end security which is considered as one of the important problems.

Fast Video Detection Using Temporal Similarity Extraction of Successive Spatial Features (연속하는 공간적 특징의 시간적 유사성 검출을 이용한 고속 동영상 검색)

  • Cho, A-Young;Yang, Won-Keun;Cho, Ju-Hee;Lim, Ye-Eun;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.929-939
    • /
    • 2010
  • The growth of multimedia technology forces the development of video detection for large database management and illegal copy detection. To meet this demand, this paper proposes a fast video detection method to apply to a large database. The fast video detection algorithm uses spatial features using the gray value distribution from frames and temporal features using the temporal similarity map. We form the video signature using the extracted spatial feature and temporal feature, and carry out a stepwise matching method. The performance was evaluated by accuracy, extraction and matching time, and signature size using the original videos and their modified versions such as brightness change, lossy compression, text/logo overlay. We show empirical parameter selection and the experimental results for the simple matching method using only spatial feature and compare the results with existing algorithms. According to the experimental results, the proposed method has good performance in accuracy, processing time, and signature size. Therefore, the proposed fast detection algorithm is suitable for video detection with the large database.

Effective Morphological Layer Segmentation Based on Edge Information for Screen Image Coding (스크린 이미지 부호화를 위한 에지 정보 기반의 효과적인 형태학적 레이어 분할)

  • Park, Sang-Hyo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.38-47
    • /
    • 2013
  • An image coding based on MRC model, a kind of multi-layer image model, first segments a screen image into foreground, mask, and background layers, and then compresses each layer using a codec that is suitable to the layer. The mask layer defines the position of foreground regions such as textual and graphical contents. The colour signal of the foreground (background) region is saved in the foreground (background) layer. The mask layer which contains the segmentation result of foreground and background regions is of importance since its accuracy directly affects the overall coding performance of the codec. This paper proposes a new layer segmentation algorithm for the MRC based image coding. The proposed method extracts text pixels from the background using morphological top hat filtering. The application of white or black top hat transformation to local blocks is controlled by the information of relative brightness of text compared to the background. In the proposed method, the boundary information of text that is extracted from the edge map of the block is used for the robust decision on the relative brightness of text. Simulation results show that the proposed method is superior to the conventional methods.

An Effective P-Frame Transcoding from H.264 to MPEG-2 (H.264 to MPEG-2 Transcoding을 위한 효율적인 P-Frame 변환 방법)

  • Kim, Gi-Hong;Son, Nam-Rye;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.31-36
    • /
    • 2010
  • After the launch of MPEG-2, it is widely used in multimedia applications like a Digital-TV or a DVD. Then, After the launch of H.264 at 2004, it has been expected to replace MPEG-2 and services IPTV and DMB. As we have been used to MPEG-2 devices by this time, we can not access H.264 Broadcast with MPEG-2 device. So We propose a new approach to transcode H.264 video into MPEG-2 form which can facilitate to display H.264 video with MPEG-2 device. To reduce the quality loss by transcoding, we use CPDT(Cascaded Pixel Domain Transcoder) structure. And to minimize processing time, SKIP block, INTRA block and motion vectors obtain from decoding process is employed for transcoding. we use BMA(Boundary Matching Algorithm) to select only one from candidate motion vectors. Experimental results show a considerable improved PSNR with reduction in processing time compared with existing methods.

Threshold Selection Method for Capacity Optimization of the Digital Watermark Insertion (디지털 워터마크의 삽입용량 최적화를 위한 임계값 선택방법)

  • Lee, Kang-Seung;Park, Ki-Bum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2009
  • In this paper a watermarking algorithm is proposed to optimize the capacity of the digital watermark insertion in an experimental threshold using the characteristics of human visual system(HVS), adaptive scale factors, and weight functions based on discrete wavelet transform. After the original image is decomposed by a 3-level discrete wavelet transform, the watermarks for capacity optimization are inserted into all subbands except the baseband, by applying the important coefficients from the experimental threshold in the wavelet region. The adaptive scale factors and weight functions based on HVS are considered for the capacity optimization of the digital watermark insertion in order to enhance the robustness and invisibility. The watermarks are consisted of gaussian random sequences and detected by correlation. The experimental results showed that this algorithm can preserve a fine image quality against various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, sharpening, linear and non-linear filtering, etc.

  • PDF

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.