In this study, HU(hounsfield unit) value of CT generated by dental prosthesis was measured according to the type of metal when PET-CT was performed, and the degree of distortion and standard deviation of SUV(standard uptake value) and to propose a method to reduce errors in image reading. PET-CT was performed using actual teeth, metal crown, gold crown, titanium, and zirconia dental prosthesis. Compared with general teeth, the SUV value increased with increasing HU value. The SUV value of metal crown, titanium, and zirconia was increased by 37% and the gold crown increased by 45.4%. In addition, image distortions were small in general teeth, metal crown, titanium, and zirconia, but hard curing of the gold crown occurred and image distortion occurred. Therefore, since the metal type of the dental prosthesis affects the SUV value, the NAC(non attenuation correction) PET image of the dental prosthesis can be helpful in the diagnosis of the patient using the gold material.
The purpose of this study was to develop an assist device that could correct and support patient position during biopsy on computed tomography (CT) using 3D printing technology. The development method was conducted in the order of 3D design, 3D output, intermediate evaluation for product, final assist device evaluation. The 3D design method was conducted in the order of prior research data survey, measurement, primary modeling, 3D printing, output evaluation, and supplementary modeling. The 3D output was the 3D printer (3DWOX 2X, Sindoh, Korea) with additive manufacturing technology and the polylactic acid (PLA) materials. At this time, the optimal strength was evaluated to infill degree of product as the 3D printing factors into 20%, 40%, 60%, and 80%. The intermediate evaluation and supplementation was measured noise in the region of interest (ROI) around the beam hardening artifact on the CT images. We used 128-channel MDCT (Discovery 75 HD, GE, USA) to scan with a slice thickness of 100 kVp, 150 mA, and 2.5 mm on the 3D printing product. We compared the surrounding noise of the final 3D printing product with the beginning of it. and then the strength of it according to the degree of infill was evaluated. As a result, the surrounding noise of the final and the early devices were measured at an average of 3.3 ± 0.5 HU and 7.1 ± 0.1 HU, respectively, which significantly reduced the noise of the final 3D printing product (p<0.001). We found that the percentage of infill according to the optimal strength was found to be 60%. Finally, development of assist devices for CT biopsy will be able to minimize artifacts and provide convenience to medical staff and patients.
Although magnetic resonance imaging without linear hardening of CT is recognized as a method of obtaining high contrast of tissue and excellent resolution image in brain disease and head and neck examination, magnetic susceptibility artifact is generated in case of metal implants in the oral cavity, which is an obstacle to image diagnosis. Therefore, an effort was made in this thesis to find a method to reduce artifacts caused by dental implants and prosthesis in MRI. Implant-induced artifacts in magnetic resonance imaging showed that the signal size increased with shorter TE in GE technique and was inconsistent with water temperature change. In SE technique as well, the signal size of water was generally higher than that of air, but the signal to noise ratio (SNR) was not different by air and temperature. In EPI technique, images with fewer artifacts were obtained quantitatively and qualitatively when there was more water than air, and the signal to noise ratio was measured the highest, especially at water temperatures of 20° and 30°. In conclusion, when examining using the EPI technique rather than the SE or the GE technique, obtaining brain diffusion using a 20° and 30° water bag reduces the magnetic susceptibility artifacts caused by implants and prosthesis, suggesting that it may provide images with high diagnostic value.
Applying the bismuth shield used to reduce the radiation exposure, image quality may be reduced due to beam hardening caused by the shield during CT scan. Therefore, we tried to find out the energy range that can reduce image degradation by applying GSI mode of G company's dual energy CT and examine the possibility through experiment. As a result, after bismuth shielding, 118 ± 10.6 HU and 50.1 ± 14.6 HU at 50 keV after dual-energy CT scan were the most similar to the CT value before image deterioration(p> 0.05). It was measured 176.6 ± 7.1 and 138.3 ± 1.1 at 50 keV(p> 0.05). Experiments showed that the use of the shield during CT inspection inevitably degrades the image quality, but experiments show that the GSI function of the dual energy CT can maintain the image quality even when the shield is used. If the various shields are secured after the evaluation using the dual energy CT, it is expected to overcome the disadvantages of poor image quality caused by the use of the radiation shield for reducing the exposure, which is the biggest disadvantage of the CT scan.
Purpose: In the whole body PET/CT scan, it is natural to lift the patient's arm for its quality improvement. However, when the lesion is located in head and neck, the arms should be located lower. This study was designed to compare the CT effective dose for each arm position applying Automatic Exposure Control (AEC). Materials and Methods: 45 patients who had $^{18}F$-FDG whole body PET/CT scan were studied with Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY), Discovery STe 8 (GE healthcare, USA). The CT effective dose of 15 patients for each equipment was measured and comparatively analyzed in both arm-lifted position and lower-arm position. ImPACT v1.0 program was used as the method of measurement for CT effective dose. For the statistics analysis, Paired t-test which paired with SPSS 18.0 statistic program was applied. Results: In the case of arm-lifted, it was measured as $6.33{\pm}0.93mSv$ for Biograph Sensation 16, $8.01{\pm}1.34mSv$ for Biograph Truepoint 40, and $9.69{\pm}2.32mSv$ for Discovery STe 8. When arms are located lower position, it was measure as $6.97{\pm}0.76mSv$, $8.95{\pm}1.85mSv$, $13.07{\pm}2.87mSv$ for each. CT effective dose according to the arm position was 9.2% for Biograph Truepoint 40, 10.5% for Biograph Sensation 16, and 25.9% for Discovery Ste 8. The statistics analysis showed the meaningful difference ($p$<0.05). Conclusion: For the whole body PET/CT case, CT effective dose applying AEC was decreased the radiation exposure of the patients when the arm was lifted for 15.2% of average value. The patient who has no lesion in head and neck would decrease the artifact occurrence in objective part and lower the CT effective dose. Also, for the patient who had lesion in head and neck, the artifact in objective part can be lower by putting the arms down, the fact that CT effective dose increases should be concerned in its whole body PET/CT scan.
Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
Progress in Medical Physics
/
v.27
no.1
/
pp.31-36
/
2016
The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.
Kim, Sang Gyu;Kim, Jung Yul;Park, Min Soo;Jo, Seung Hyun;Lim, Han Sang;Kim, Jae Sam
The Korean Journal of Nuclear Medicine Technology
/
v.18
no.2
/
pp.3-7
/
2014
Purpose SPECT/CT scan to be performed attenuation correction on the basis of CT induce an overestimation of the site due to the beam hardening artifact by metal cover and reduce the images quality. Therefore, this study using a phantom that has been inserted artificial hip joint investigated that effect on the SPECT/CT image causing by metal artifact for varying the parameters of the Attenuation Map. Materials and Methods Siemens Symbia T16 SPECT/CT equipment was used. Artificial hip joint was inserted to SPECT/PET phantom, 17 mm sphere of Bright Streak area in CT image was filled with Tc-99m so that the radiation activity was 8 times compared to background. And then Hot and Background was measured in varying Wide Beam Coefficient on Attenuation Map and RBR (Region to Background Ratio) of Metal and Non-Metal was calculated and analyzed depending on the presence or absence of the hip joint. Results It tended to hot count of Non-Metal and Metal to increase as the value of the manual mode is increased, hot count ratio with the group of both manual mode 0.5 and 0.4 is the best match. Also, in automatic mode, the ratio of RBRNon-Metal and RBRMetal was 1.135, statistically significant difference was not observed in the manual mode 0.5 and 0.4. Conclusion In the automatic mode of Wide Beam Coefficient in attenuation correction map, it was found that it is over-correction by 13.52%, it was possible to minimize the over-correction by the artifact in 0.5 and 0.4 of manual mode. Further studies should be performed in order to apply to a patient with the help of this and it is considered possible to reduce the over-correction by the metal artifact of an artificial hip joint for Hip-Resurfacing Arthroplasty patients, and to improve the diagnostic performance.
Park, Min Soo;Ham, Jun Cheol;Cho, Yong In;Kang, Chun Goo;Park, Hoon-Hee;Lim, Han Sang;Lee, Chang Ho
The Korean Journal of Nuclear Medicine Technology
/
v.16
no.2
/
pp.35-43
/
2012
Purpose : PET/CT performed CT-based attenuation correction generates the beam hardening artifact by metallic implant. The attenuation correction causes over or underestimate of the area adjacent to metallic hip prosthetic material and change of $^{18}F$-FDG uptake. Also, the image quality and the diagnosability on genitourinary disease are reduced. Therefore, this study will evaluate the usefulness of MAR (Metal Artifact Reduction) algorithm method to improve the image quality on PET/CT. Materials and Methods : PET/CT was performed by fixing hip prosthesis in SPECT/PET phantom. In PET images with and Without MAR algorithm, the Bright streak, Dark streak, Metal region and Background area that appeared on CT were confirmed, and the change of each SUV (standardized uptake value) was analyzed. Also, in 15 patients who underwent total hip arthroplasty, each MAR algorithm and Without MAR algorithm and non attenuation correction was evaluated. Results : In PET image Without MAR algorithm, SUV of Bright streak region was $0.98{\pm}0.48$ g/ml; Dark streak region was $0.88{\pm}0.02$ g/ml; Metal region was $0.24{\pm}0.16$ g/ml, Background area was $0.91{\pm}0.18$ g/ml. In SUV of PET image with MAR algorithm, Bright streak region was $0.88{\pm}0.49$ g/ml, Dark streak region was $0.63{\pm}0.21$ g/ml, Metal region was $0.06{\pm}0.07$ g/ml, Background was $0.90{\pm}0.02$ g/ml. SUV generally decreased when applying MAR algorithm. In PET image Without MAR algorithm, SUVs of Bright region were higher than those measured in the Background, and it was false positive uptake. But, in PET image with MAR algorithm, SUVs of Bright region were similar to the Background, and false positive uptake disappeared. Conclusion : MAR algorithm could reduce an increase of $^{18}F$-FDG uptake due to attenuation correction in the hip surrounding tissue. However, decrease of SUV in Dark streak region should be considered in the future. Therefore, this study propose that the diagnostic accuracy can be improved in genitourinary diseases adjacent to metallic hip prosthesis, if provided PET images with and Without MAR algorithm, and non attenuation correction images at the same time.
Purpose: Low dose of PET/CT is important because of Patient's X-ray exposure. The aim of this study was to evaluate the effectiveness of low-dose PET/ CT image through the CTAC and QAC of patient study and phantom study. Materials and Methods: We used the discovery 710 PET/CT (GE). We used the NEMA IEC body phantom for evaluating the PET data corrected by ultra-low dose CT attenuation correction method and NU2-94 phantom for uniformity. After injection of 70.78 MBq and 22.2 MBq of 18 F-FDG were done to each of phantom, PET/CT scans were obtained. PET data were reconstructed by using of CTAC of which dose was for the diagnosis CT and Q. AC of which was only for attenuation correction. Quantitative analysis was performed by use of horizontal profile and vertical profile. Reference data which were corrected by CTAC were compared to PET data which was corrected by the ultra-low dose. The relative error was assessed. Patients with over weighted and normal weight also underwent a PET/CT scans according to low dose protocol and standard dose protocol. Relative error and signal to noise ratio of SUV were analyzed. Results: In the results of phantom test, phantom PET data were corrected by CTAC and Q.AC and they were compared each other. The relative error of Q.AC profile was been calculated, and it was shown in graph. In patient studies, PET data for overweight patient and normal weight patient were reconstructed by CTAC and Q.AC under routine dose and ultra-low dose. When routine dose was used, the relative error was small. When high dose was used, the result of overweight patient was effectively corrected by Q.AC. Conclusion: In phantom study, CTAC method with 80 kVp and 10 mA was resulted in bead hardening artifact. PET data corrected by ultra- low dose CTAC was not quantified, but those by the same dose were quantified properly. In patients' cases, PET data of over weighted patient could be quantified by Q.AC method. Its relative difference was not significant. Q.AC method was proper attenuation correction method when ultra-low dose was used. As a result, it is expected that Q.AC is a good method in order to reduce patient's exposure dose.
With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.