본 논문에서는 효율적 항만관리를 위하여 영상기반 선박 검출 방법을 제안한다. 움직이는 선박의 추적이 용이하도록 시각집중 알고리즘과 평균이동 알고리즘을 적용하여 배경정보를 포함하지 않는 선박영역을 검출한다. 시각집중알고리즘은 배경으로부터 두드러진 특징을 갖는 객체를 추출하는데 효과적이기 때문에 해상에서 선박을 검출하는데 용이하다. 돌출영역에 포함되어 있는 배경정보를 제거하기 위하여 평균이동 알고리즘을 이용하여 영상 분할 및 클러스터링을 한다. 돌출영역 내에 있는 화소 중에서 돌출영역 주변의 클러스터와 같은 컬러값을 갖는 화소를 배경으로 처리함으로써 선박만을 검출한다. 항만에 설치된 고해상도 카메라의 영상을 이용하여 선박 검출 시뮬레이션 결과 제안하는 방법이 선박을 검출하는데 효과적임을 보인다.
현재 국내 환경에서의 HF 레이더는 기본적으로 표층해류의 속도와 방위의 측정에 최적화 되어있는 상태이다. 따라서, 이러한 환경하에서 선박을 탐지하는 데에는 큰 환경 잡음과 다수의 오검출로 인하여 기존의 선박 검출 및 추적 기술로는 정밀도에 한계점이 있다. 특히, 국내의 지형환경에 적합한 콤팩트형 HF(High Frequency) 레이더를 선박의 감시에 적용했을 경우에 나타나는 문제점들인 잡음과 간섭으로 인한 원신호 왜곡과 다수의 오검출이 발생하여 성능에 영향을 미치는 것을 극복하기 위한 검출 및 추적 기술이 요구된다. 본 논문에서는 이러한 조건 하에서 적용이 가능한 선박 검출 및 추적 기술을 제안을 하며, 서해에서 운용되고 있는 콤팩트 HF 레이더 사이트에서 획득한 관측 데이터에 적용하여 성능을 평가하였다. 제안된 기법은 선박의 검출에 대한 부분과 검출 결과의 추적에 대한 부분으로 이루어져 있다. 선박의 검출은 CFAR(Constant False Alarm Rate) 기반의 검출기를 활용하였으며, 실제 환경에서 불규칙적으로 획득되는 잡음과 오검출 신호를 줄이기 위한 PCA(Principal Component Analysis) 기반의 부분공간 분리기법을 적용하였다. 또한, 긴 입력 획득 주기(Coherent Processing Interval) 동안에 발생하는 도플러 주파수 변화로 인하여 하나의 선박이 다수의 검출값을 생성하기도 하는데, 이를 결합하기 위한 군집화 기법을 적용하였다. 선박의 검출 결과는 검출에 실패하거나 오검출을 포함시키는 경우도 발생하는데, 이러한 오검출을 줄이기 위한 선박 추적 기법을 적용하였다. 실험 결과에 따르면 제안된 선박 검출 및 추적 기술을 통하여 콤팩트 HF 레이더가 일정 거리에서 선박의 검출 성공율이 우수하다는 것을 확인할 수 있다.
선박 객체 검출 기술은 입력된 비디오 및 영상 데이터에서 선박 객체가 존재하는 경우 선박의 위치를 검출하는 기술로서 입력 영상의 환경 변화와 잡음의 영향에 따라서 검출 정확도의 편차가 높다. 이런 문제점을 해결하기 위하여 본 논문에서는 배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출 기술을 제안한다. 제안하는 방법은 배경 제거 단계, 잡음 제거 단계, 객체 기준 위치 설정 단계, 객체 재구성 단계, 다중 객체 검출 단계 등 5단계를 거쳐서 선박을 검출한다. 다양한 변수를 고려한 15가지 실험 비디오를 대상으로 한 실험을 통해서 98.7%의 검출율을 나타내었으며, 환경 변화에 강인한 검출을 수행하는 것을 확인할 수 있었다. 제안하는 방법은 해상 관제와 선박 자동 운항 기술의 기반 기술로서 유용하게 사용될 수 있다.
항·포구내에서 주.야간에 걸쳐 미등록 선박을 검출하기 위해, 가시광 및 IR, 라이다 센서를 통해 선박 영상 및 거리정보를 획득하고, 딥러닝 기술을 적용하여 선박의 외관에 대한 특징 분석 및 선박에 표기된 문자열의 인식, 선박의 크기 측정을 통해 선박을 분류하고 특정하는 기술 개발
선박과 선박, 선박과 육상 관제소간에 선박의 위치정보 등을 자동 송수신하여 선박 간의 충돌 방지 및 해난 수색 구조 활동을 지원하기 위하여 선박 자동 식별 장치인 AIS(automatic identification system)을 채용하고 있다. 그리고, 항만의 관제시스템은 선박 AIS와 연계하여 선박의 통항을 관리한다. 효율적인 통항관리를 할 수 있도록 AIS 연동하는 선박 인식 및 표출 시스템이 요구되고 있다. 본 논문에서는 카메라로부터 입력된 해상 또는 항만 영상에 대하여 배경추정을 이용한 영상기반의 선박검출과 검출된 해당 선박의 AIS 신호를 연동하여 모니터 상에 표출하는 AIS 연동 선박검출 방법을 제안한다. 해상 또는 항만에서 실시간 입력되는 영상에 대하여 선박 검출 실험을 하였다. 시뮬레이션 및 실험결과 제안하는 알고리즘이 항만의 선박 관제에 효과적으로 활용할 수 있음을 확인하였다.
본 논문에서는 카메라로부터 입력된 해상 또는 항만 영상에 대하여 배경추정을 이용한 영상기반의 선박검출과 해당 선박의 AIS 신호를 연동하여 모니터 상에 표출하는 AIS 연동 선박검출시스템을 제안한다. 해상 또는 항만에서 실시간 입력되는 영상에 대하여 선박 검출 실험을 하였다. 시뮬레이션 및 실 환경에서의 실험결과 제안하는 알고리즘이 선박 관제에 효과적인 것을 확인하였다.
낮은 비용으로 넓은 관측 범위를 갖는다는 장점으로 최근 해양 감시 시스템 개발을 위해 HF 레이더를 이용한 선박 검출 및 추적 연구가 수행되고 있다. HF 레이더를 이용한 해양 감시를 위해 수많은 선박 관측과 추적 알고리즘이 개발되었지만, 각 연구에 사용된 데이터는 선박의 이동 경로와 크기 등 대상 선박에 대한 조건이 다르기 때문에 동등한 조건에서 그 성능을 비교할 수 없다. 본 논문에서는 선박 크기와 이동 경로에 따른 데이터를 생성할 수 있는 콤팩트 HF 레이더 기반 데이터 생성 시뮬레이터를 제안한다. 이를 통해 생성된 데이터를 이용하면 동일한 선박 조건에서 성능 비교가 가능할 것이다. 실험에서는 제안하는 시뮬레이터에서 생성된 데이터와 SeaSonde HF 레이더 사이트에서 실제 관측된 데이터를 비교하였다. 비교 결과, 제안하는 시뮬레이터를 사용하여 생성된 데이터와 실제 환경에서 획득된 데이터가 유사함을 확인할 수 있었다. 그러므로 선박의 크기 및 이동 경로에 따라 생성된 시뮬레이션 데이터를 사용함으로써, 알고리즘의 검출 및 추적 성능을 각각 비교, 분석 할 수 있을 것이다.
흘수는 선체가 물속에 얼마나 잠겨있는지를 나타내는 용어로, 선박에서는 화물의 양을 계산하거나 안정성을 평가하기 위해 흘수를 측정한다. 흘수를 측정하는 방법으로는 항해사가 부두에서 육안으로 확인하거나, 사다리를 타고 내려가 직접 확인하는 방법이 있다. 이러한 방법들은 경우에 따라 흘수 측정이 불가능하거나, 추락의 위험이 항상 존재한다는 문제가 있다. 이러한 문제를 해결하기 위해 드론 등을 통해 카메라로 선박의 흘수선 부근을 촬영하고, 필터링 및 이미지 검출 기법을 사용하여 선박의 흘수선을 탐지하는 방안을 제시하였다.
선박은 크고, 복잡한 구조로 되어 있기 때문에 다른 작업자의 위치를 알아내기 어려우며, 특히 작업자가 쓰러진 경우에는 발견하기가 쉽지 않아 신속한 대처가 어렵다. 그리하여, 신체에 디바이스를 부착하는 방법이나 카메라를 이용하여 쓰러짐을 검출하기 위한 연구가 진행되고 있다. 기존의 영상기반 쓰러짐 검출은 사람의 신체부위를 검출하여 쓰러짐을 판단하였으나, 조선소에서는 다양한 복장과 자세로 작업으로 인해 검출하기가 어렵다. 본 논문에서는 쓰러짐 영역 전체를 추출하여 딥러닝 학습으로 선박 작업자의 쓰러짐을 이미지 기반으로 검출하였다. 학습에 필요한 데이터는 조선소의 건조중인 선박에서 쓰러진 모습을 연출하여 획득하였으며, 이미지를 좌우대칭, 크기조절, 회전하여 학습 데이터의 수를 증가하였다. 성능평가는 정밀도, 재현율, 정확도 그리고 오차율로 평가하였으며, 데이터의 수가 많을수록 정밀도가 향상되었다. 다양한 데이터를 보강하면 카메라를 이용한 쓰러짐 검출 모델의 실효성이 향상됨으로서 안전 분야에 기여할 수 있을 것으로 사료된다.
화재의 초기 검출은 인명과 재화의 손실을 최소화하기 위한 중요한 요소이다. 불꽃과 연기를 신속하면서 동시에 검출해야 하며 이를 위해 영상 기반의 화재 검출에 관한 연구가 다양하게 진행되고 있다. 기존의 화재 검출은 불꽃과 연기의 특징을 추출하기 위해 여러 알고리즘을 거쳐서 화재의 검출 유무를 판단하므로 연산량이 많이 소모되었으나, 딥러닝 알고리즘인 합성곱 신경망을 이용하면 별도의 과정이 생략되므로 신속하게 검출할 수 있다. 본 논문에서는 선박 기관실에서 화재 영상을 녹화한 데이터로 실험을 수행하였다. 불꽃과 연기의 특징을 외각 상자로 추출한 후 합성곱 신경망 중 하나인 욜로(YOLO)를 이용하여 학습하고 결과를 테스트하였다. 실험 결과를 검출률, 오검출률, 정확도로 평가하였으며 불꽃은 0.994, 0.011, 0.998, 연기는 0.978, 0.021, 0.978을 나타내었고, 연산시간은 0.009s를 소모됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.