• Title/Summary/Keyword: 선박용 벨로우즈

Search Result 8, Processing Time 0.026 seconds

FEM을 이용한 선박용 벨로우즈의 강도예측

  • 김형준;김현수;조우석;제승봉;김종필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.79-79
    • /
    • 2004
  • 벨로우즈는 형상자체가 가지는 유연성으로 인하여 배관시스템에서 발생하는 변형을 흡수하여 시스템의 파손을 방지하기 위해 주로 사용한다. 특히 자동차, 항공기, 선박의 파이프 배관시스템 설계시 열, 고압에 의한 변형 방지, 배기계의 진동 흡수 등을 위해 가장 널리 사용되고 있다. 또한 벨로우즈는 파이프라인에는 모든 경우에 사용이 가능하고, 설치와 유지보수가 간단하다는 이점이 있다.(중략)

  • PDF

Performance evaluation of the forming methods used in the production of bellows for LNG carriers I - Comparison of design methods and mechanical properties of bellows - (LNG 선박용 벨로우즈의 제작시 성형방법에 따른 성능 평가 I - 벨로우즈의 제작방법 및 기계적 특성 비교 -)

  • Kim, Pyung-Su;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.587-592
    • /
    • 2016
  • Bellows for LNG carriers must be corrosion resistant in order to operate in seawater environments. They must also have long fatigue lives in order to withstand the expansion and contraction caused by large temperature changes and continuous vibration in extreme environments. In order to incorporate these properties into bellow design, it is important to use materials that are resistant to cold brittleness and corrosion, and maintain their optimized forming condition. The design conditions and forming methods used for bellows must be optimized in order to incorporate these characteristics. In this study, finite element analysis was used to develop cryogenic bellows, which have good mechanical strength and reliability. In addition, two different forming methods (mechanical and hydroforming) were used to design and produce bellows, in order to derive their forming condition. The height, thickness, and hardness of the convolutions of bellows produced by each method were measured and compared with each other. The results confirmed that the two forming methods produced bellows with different mechanical properties.

Performance evaluation according to the forming method during production of bellows for LNG carriers II - Comparison of low cycle fatigue characteristics - (LNG 선박용 벨로우즈의 제작시 성형방법에 따른 성능 평가 II - 저주기 피로 특성 비교 -)

  • Kim, Pyung-Su;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-598
    • /
    • 2016
  • Static tests and low-cycle fatigue tests were conducted to analyze the characteristics of the bellows for LNG vessels according to the forming methods. The cycle life of bellows was tested based on the specified cyclic life, 80000 cycles, to analyze the difference in characteristics between pre-and post-test data by measuring the strain and stress of each convolution of formed bellows. The low-cycle fatigue test was conducted using a strain gauge that was attached to the convolution of bellows. Formed bellows were placed on the structural test device which was equipped with a hydraulic system and was capable of moving in the x-y direction. Data was measured and processed by a multi recorder. Through the static test and low-cycle fatigue tests results, the difference between the cycle life of bellows formed by mechanical methods and of those formed by hydraulic methods was investigated. Moreover, the cause of difference in cyclic life according to forming methods was performed.

Fundamental study on the weldability and formability of INCOLOY825 alloys and STS316L alloys (INCOLOY 825합금 및 STS316L합금의 용접성과 성형성에 관한 기초적 연구)

  • Kim, Pyung-Su;Choi, Ho-Young;Choi, So-Young;Kim, Young-Sik;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.698-703
    • /
    • 2014
  • Currently, demand of liquefied natural gas as an alternatice energy inceases because of depletion of fossil fuels. it is accompanied by inceasing demand of LNG ship. Consequentially, it is expected that demand of bellows for LNG ship increase. The material used for LNG vessels's bellows is an alloy of INCOLOY 825 and STS316L, which are strong against low-temperature brittleness and seawater corrosion. This study establishes the welding condition of LNG vessel's bellows material in extremely low temperature, and analyzes the formability of weld through Erichsen Test. When welding was conducted at optimal condition, tensile strength of weld presneted strength value up to 90% compared with base metal. As results of formalbility through Erichsen test, very good weld that failure occrued in base metal was gotten.

A study on the shape optimization of ship's bellows using DOE (실험계획법을 이용한 선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.J.;Kim H.S.;Cho U.S.;Jeo S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.637-640
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue lift is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type ship's bellows that is applied to design of experiment using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Shape Optimization for Performance Improvement of Ship's U-type Bellows (선박용 U형 벨로우즈의 성능 향상을 위한 형상 최적화)

  • Kim, Hyoung-Jun;Kim, Hyun-Su;Kim, Jong-Pil;Park, Jun-Hong;Kim, Myoung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.123-129
    • /
    • 2006
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is desirable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A. Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element analysis. The design factors, mountain height, length, thickness, and the number of convolutions are considered and the proper values are chosen for the simulation. The results shaw that as the number of convolutions reduces, the volume decreases while the stress increases. However, as the number of convolutions increases, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the mass and stress are decreasing at a certain lower value region. Also, we investigated shape optimization with considering maximum stress distribution tendency.

Shape Optimum Design of Ship's Bellows Using Statistical Method (통계적 방법을 이용한 선박용 벨로우즈의 형상 최적 설계)

  • Kim, Hyun-Su;Kim, Hyo-Gyeum;Lee, Jae-Sub;Kim, Hyoung-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.55-60
    • /
    • 2007
  • Bellows are mechanical components which prevent the damage of system by absorption of the vibration and the displacement of axle and radial direction. Thermal piping system is expanded by the fluid of the high temperature from the heat engine inside. At this time, bellows prevent the damage of the piping due to the thermal expansion. Recently, design of bellows is required to fit some other operational environments which are not suggested in the E.J.M.A code book. And it is difficult to produce and to maintain bellows of high temperature and high pressure bemuse of its complicated shape and this causes the manufacturing cost to rise. The objective of this study is to determine optimum shape of bellows which can endure in the high temperature and high pressure. The maximum stress has an effect on the fatigue life of bellows, therefore it needs to be minimized. This study attempts to find a shape which minimizes the stress occurring in the bellows by the design of experiment. The model used in this study is not presented in the E.J.M.A code book, therefore, from the result of design of experiment we find the factors which give effects on the characteristic value and we presents the recession model using the RSM, which can predict the characteristic values depending on the change of factor values.

A study on the shape optimization of ship's bellows (선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.S.;Kim H.J.;Cho W.S.;Jeh S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1303-1306
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The results shows that if the number of mountains are reduced, the volume decreases while the stress increases. However, the number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF