• 제목/요약/키워드: 선량 교정

Search Result 163, Processing Time 0.029 seconds

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

The Calibration of $^{90}$ Sr Ophthalmic Applicator by Measuring Electron Current (전류 측정 방식에 의한 안과용 $^{90}$ Sr 선원의 교정)

  • 이병용;신동오;김현자;홍성언;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.149-154
    • /
    • 1991
  • We have designed and applied the calibrationmethod of $\^$90/Sr Ophthalmic Applicaton by measuring the electron currents. We considered the number of electrons which is emitted from the source, the area of the source, and the electron stopping power in the water, and those data were used for calculation. Film was used for evaluating the accurate source area. Average electron stopping power was obtained by analyzing ${\beta}$-ray energy spectrum. We compared between the result from our method and that from the TLD measurements. The calibration result from our method shows 63.3 ${\pm}$5.1 cGy/sec, while 50.7${\pm}$7.3 cGy/sec from TLD measurement. But the supplier's specification tells 46.89.4cGy/sec.

  • PDF

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

A Study on Accuracy and Usefulness of In-vivo Dosimetry in Proton Therapy (양성자 치료에서 생체 내 선량측정 검출기(In-vivo dosimety)의 정확성과 유용성에 관한 연구)

  • Kim, Sunyoung;Choi, Jaehyock;Won, Huisu;Hong, Joowan;Cho, Jaehwan;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • In this study, the authors attempted to measure the skin dose by irradiating the actual dose on to the TLD(Thermo-Luminescence Dosimeter) and EBT3 Film used as the In-vivo dosimetry after planning the same treatment as the actual patient on a Phantom, because the erythema or dermatitis is frequently occurred on the patients' skin at the time of the proton therapy of medulloblastoma patient receiving the proton therapy. They intended to know whether there is the usefulness for the dosimetry of skin by the comparative analysis of the measured dose values with the treatment planned skin dose. The CT scan from the Brain to the Pelvis was done by placing a phantom on the CSI(Cranio-spinal irradiation) Set-up position of Medulloblastoma, and the treatment Isocenter point was aligned by using DIPS(Digital Image Positioning System) in the treatment room after planning a proton therapy. The treatment Isocenter point of 5 areas that the proton beam was entered into them, and Markers of 2 areas shown in the Phantom during CT scans, that is, in all 7 points, TLD and EBT3 Film pre-calibrated are alternatively attached, and the proton beam that the treatment was planned, was irradiated by 10 times, respectively. As a result of the comparative analysis of the average value calculated from the result values obtained by the repeated measurement of 10 times with the Skin Dose measured in the treatment planning system, the measured dose values of 6 points, except for one point that the accurate measurement was lacked due to the measurement position with a difficulty showed the distribution of the absolute dose value ${\pm}2%$ in both TLD and EBT Film. In conclusion, in this study, the clinical usefulness of the TLD and EBT3 Film for the Enterance skin dose measurement in the first proton therapy in Korea was confirmed.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

Determination of TRS-398 Quality Factors for Cs-137 Gamma Rays in Reference Dosimetry (Cs-137 감마선의 선량측정을 위한 TRS-398 선질인자 결정에 관한 연구)

  • Kang, Sang Koo;Rhee, Dong Joo;Kang, Yeong Rok;Kim, Jeung Kee;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • The Cs-137 irradiator is widely used to irradiate biological samples for radiobiological research. To obtain the accurate outcomes, correct measurements of the delivered absorbed dose to a sample is important. The IAEA protocols such as TRS-277 and TRS-398 were recommended for the Cs-137 reference dosimetry. However in TRS-398 protocol, currently known as the most practical dosimetry protocol, the quality factor ($k_{Q,Q_0}$) for Cs-137 gamma rays is not suggested. Therefore, the use of TRS-398 protocol is currently unavailable for the Cs-137 dosimetry directly. The calculation method previously introduced for high energy photon beams in radiotherapy was used for deriving the Cs-137 beam qualities ($k_{Q,Q_0}$) for the 15 commercially available farmer type ionization chambers in this study. In conclusion, $k_{Q,Q_0}$ values were ranged from 0.998 to 1.002 for Cs-137 gamma rays. These results can be used as the reference and dosimeter calibrations for Cs-137 gamma rays in the future radiobiological researches.

Average and Effective Energies, and Fluence-Dose Equivalent Conversion Factors for $^{239}Pu-Be,\;^{241}Am-Li\;and\;^{241}Am-F$ Neutron Sources

  • Ro, Seung-Gy;Yoo, Young-Soo
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.155-160
    • /
    • 1971
  • Average and effective energies for 239Pu-Be, 241Am-Li and 241Am-F neutron sources have been calculated from a number of published data for the neutron spectra and for the dose equivalent as a function of neutron energies by a numerical method. Also a calculation of the dose equivalent conversion factors, i. e., the first collision dose equivalent and the surface (or multicollision) dose equivalent that equals the product of surface-absorbed dose and a corresponding quality factor, per unit fluence of neutrons from these sources has been carried out in the same way as before. The results are as follows : 1. for average energies 4.07$\pm$0.33, 0.42 and 1.41 MeV; 2. for effective energies based on the concept of the first collision process in the human body 4.45$\pm$0.344, 0.51 and 1.47 MeV; 3. for effective energies based on the concept of the multi-collision process in the human body 4.50$\pm$0.36, 0.50 and 1.45 MeV; 4. for fluence-first collision dose equivalent conversion factors (2.74$\pm$0.07)10$^{-8}$ , 1.58$\times$ 10$^{-8}$ and 2.34$\times$10$^{-8}$ rems/(n/$\textrm{cm}^2$); and 5. for fluence-surface dose equivalent conversion factors (3.55$\pm$0.09)10$^{-8}$ , 2.19$\times$10$^{-8}$ and 2.82$\times$10$^{-8}$ rems/(n/$\textrm{cm}^2$) : respectively.

  • PDF

A Study on the Patient Exposure Doses from the Panoramic Radiography using Dentistry (치과 파노라마 촬영에서 환자의 피폭선량에 관한 연구)

  • Park, Ilwoo;Jeung, Wonkyo;Hwang, Hyungsuk;Lim, Sunghwan;Lee, Daenam;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study estimate radiation biological danger factor by measuring patient's exposed dose and propose the low way of patient's exposed dose in panoramic radiography. We seek correcting constant of OSL dosimeter for minimize the error of exposed dose's measurement and measure the Left, Right crystalline lens, thyroid, directly included upper, lower lips, the maxillary bone and the center of photographing that indirect included in panoramic radiography by using the human body model standard phantom advised in ICRP. In result, the center of photographing's level of radiation maximum value is $413.67{\pm}6.53{\mu}Gy$ and each upper, lower lips is $217.80{\pm}2.98{\mu}Gy$, $215.33{\pm}2.61{\mu}Gy$. Also in panoramic radiography, indirect included Left, Right crystalline lens's level of radiation are $30.73{\pm}2.34{\mu}Gy$, $31.87{\pm}2.50{\mu}Gy$, and thyroid's level of measured exposed dose can cause effect of radiation biological and we need justifiable analysis about radiation defense rule and substantiation advised international organization for the low way of patient's exposed dose in panoramic radiography of dental clinic and we judge need the additional study about radiation defense organization for protect the systematize protocol's finance and around internal organs for minimize until accepted by many people that is technological, economical and social fact by using panoramic measurement.

Effective Dose Evaluation using Clinical PET/CT Acquisition Protocols (전신 PET/CT 영상 획득 프로토콜을 이용한 유효선량 평가)

  • Nam, So-Ra;Son, Hye-Kyung;Lee, Sang-Hoon;Lee, Chang-Lae;Cho, Hyo-Min;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation dose for clinical PET/CT protocols in clinical environments using Alderson phantom and TLDs. Radiation doses were evaluated for both Philips GEMINI 16 slice PET/CT system and GE DSTe 16 slice PET/CT system. Specific organ doses with $^{137}Cs$ transmission scan, high quality CT scan and topogram in philips GEMINI PET/CT system were measured. Specific organ doses with CT scan for attenuation map, CT scan for diagnosis and topogram in GE DSTe PET/CT system were also measured. The organs were selected based on ICRP60 recommendation. The TLDs used for measurements were selected for within an accuracy of ${\pm}5%$ and calibrated in 10 MV X-ray radiation field. The effective doses for $^{137}Cs$ transmission scan, high qualify scan, and topogram in Philips GEMINI PET/CT system were $0.14{\pm}0.950,\;29.49{\pm}1.508\;and\;0.72{\pm}0.032mSv$ respectively. The effective doses for CT scan to make attenuation map, CT scan to diagnose and topogram in GE DSTe PET/CT system were $20.06{\pm}1.003,\;24.83{\pm}0.805\;and\;0.27{\pm}0.008mSv$ respectively. We evaluated the total effective dose by adding effective dose for PET Image. The total PET/CT doses for Philips GEMINI PET/CT (Topogram+$^{137}Cs$ transmission scan+PET, Topogram+high qualify CT+PET) and GE DSTe PET/CT (Topogram +CT for attenuation map+ PET, Topogram+diagnostic CT+ PET) are $7.65{\pm}0.951,\;37.00{\pm}1.508,\;27.12{\pm}1.003\;and\;31.89{\pm}0.805mSv$ respectively. Further study may be needed to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with good image qualify.

  • PDF

Evaluation of the possibility of clinical application by surface dose measurement of ViewRay in MFW treatment (MFW 치료 시 ViewRay의 표면선량 측정에 따른 임상 적용 가능성 평가)

  • Sun, Geo Jun;Son, Sang Jun;Lee, Yang Hoon;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.169-176
    • /
    • 2018
  • Purpose : The purpose of this study is to evaluate clinical applicability of Co-60 ViewRay treatment plan to increase the skin dose in case of high skin dose is required such as Malignant Fungating Wound By measuring the presence / absence of Bolus application and skin dose by the treatment device and comparing it Materials and Methods : Nine inner measuring points of 2.5 cm lattice arrangement and all 13 measuring points including upper and lower left and right measuring points touching the chest and skin were marked. After CT was taken, each treatment plan was formulated through Eclipse and ViewRay-TPS, and a Fixed beam-IMRT treatment plan was formulated so that the left chest V2Gy=95 % is delivered. Before measurement QED detector was calibrated and the QED detector was positioned at the 13 measurement points displayed on Phantom and surface dose of each treatment planner was measured using 5 mm Bolus application using True-beam and View-ray before and after, measure three times and compare each before applying 5 mm Bolus. Results : The surface dose of the Co-60 ViewRay and the linear accelerator appeared at $76.8%{\pm}5.2%$ vs. $67.3{\pm}%7.5%$ and the surface dose after application of 5 mm Bolus was $87.6%{\pm}8.9%$ vs. $80.3%{\pm}10.2%$ It was measured at 10.2 % (p<0.001). Conclusion : As a result of the surface dose measurement of each treatment instrument, Co-60 ViewRay confirmed that the surface dose reached 95.6 % of 6 MV Linac with conventional 5 mm bolus, despite not using Bolus (p<0.001). Also, by utilizing magnetic resonance images for each treatment, it is possible to observe the change in the treatment site without the problem of exposure, it is easy to formulate an adaptive treatment plan and it is easy to secure the skin dose, so the size In the case of Malignant Fungating Wound patients who need fast skin changes and need high skin doses, Co-60 ViewRay is considered to be more useful than linear accelerators.

  • PDF