DNA 염기 서열을 분석하는데 효율적으로 쓸 수 있는 자료구조서 서픽스 트리(Suffix Tree)가 제시되었다. 그러나 매우 큰 유전자 서열에 대한 서픽스 트리는 대용량의 메모리 공간을 필요로 한다. 따라서 메모리 공간의 절약을 위해서 단어 서픽스 트리를 이용하는 방법이 제안되었다. 단어 서픽스 트리는 이러한 장점에도 불구하고 단어에 의미를 두고 만든 트리 구조이기 때문에 완전 매칭 문제를 해결하기 위한 정보가 부족해서 제한적 완전 매칭 알고리즘이 제시되었다. 제한적 완전 매칭 알고리즘에서는 찾으려는 패턴이 어떤 단어의 부-문자열에 위치하거나, 두 단어 이상에 걸쳐 나오면 찾지 못하는 문제가 발생한다. 본 논문에서는 단어 서픽스 트리의 완전 매칭 문제를 해결하기 위해 각 단어들의 서픽스에 대한 정보로 구성된 Generalized 서픽스 트리를 사용하여 확장된 단어 서픽스 트리를 제시하고, 완전 매칭 알고리즘을 제안한다.
서픽스 트리는 데이터의 내부구조를 자세히 나타내고 선형시간 탐색이 가능한 효과적인 자료구조로서 DNA 서열분석 등에 유용하다. 그러나 서열을 서픽스 트리로 구축하는 경우 트리의 크기가 원본의 최소 30배 이상으로 커지므로 테라바이트(TB)급의 대용량 DNA 서열의 경우에 메모리상의 응용은 매우 어려운 문제점이 있다. 이에 본 논문에서는 디스크를 이용한 대용량 DNA의 서픽스 트리 응용기법을 제시한다. 이때 DNA 서열구조를 고려한 서픽스 트리 선형 탐색 특성 유지를 보장한다. 이를 검증하기 위하여 9G Byte의 유전자 단편 서열을 이용해 424G Byte의 서픽스 트리를 디스크에 구축한 다음, 임의의 질의 서열에 대해 KMP알고리즘과 비교한 결과 질의 응답시간에서 우수한 성능을 보였다.
대량의 짧은 문자열들에 대해 부분 문자열의 발생 빈도를 예측하는 문제는 카운트 서픽스 트리를 미리 생성한 후 이를 이용함으로써 처리될 수 있다. 카운트 서픽스 트리는 모든 부분 문자열의 발생 빈도를 저장한 뒤 가지치기를 함으로써, 제한된 트리 크기와 발생 빈도 예측이라는 두 가지 목표를 처리한다. 하지만, 염기서열에서 처럼 저장된 문자열의 길이가 길어질 경우 카운트 서픽스 트리를 생성하기가 대단히 어려워진다는 문제점이 발생한다. 이 논문에서는 선삽입, 후가지치기 방식의 카운트 서픽스 트리 대신 처음부터 길이가 q 이하인 문자열들만을 삽입하는 큐그램 트리를 제안한다. 큐그램 트리는 제한된 트리 크기에 따라 저장할 부분 문자열의 크기를 미리 결정할 수 있으며, 데이타베이스에 저장된 문자열의 전체 길이가 N일 때 O(N) 시간에 생성 가능하다. 실험 결과 제한된 부분 문자열을 가지고 있음에도 불구하고 긴 부분 문자열의 발생 빈도를 매우 정확하게 예측할 수 있음을 보였다.
서픽스 트리는 주어진 모든 문자열의 모든 서픽스를 트리 형태로 나타내는 자료구조로서 선형시간에 구성할 수 있으며 문자열에 대한 많은 문제를 효율적으로 해결할 수 있다. 하지만 이런 효용성에도 불구하고 서픽스 트리로 구성한 문자열을 삽입/삭제하는 경우 트리를 구성하는데 상당히 많은 시간이 소비된다. 본 논문은 이러한 문제를 해결하기 위한 서픽스 트리 재구성 알고리즘을 제안한다. 제안하는 알고리즘은 부 문자열을 삽입하는 경우와 삭제하는 경우로 나눈 다음, 발생할 수 있는 모든 경우의 수를 감안해서 설계했다. 알고리즘의 성능을 평가하기 위해서 기존의 Ukkonen 알고리즘과 비교실험 해 본 결과 서픽스 트리 재구성 시 30% 이상 시간이 절약됨을 알 수 있었다.
서픽스 트리는 공통의 프리픽스의 빈도수가 높을 때 효과적인 알고리즘으로, 한정된 문자로만 구성된 DNA 유사성 검색을 위한 연구에서 널리 활용되고 있다. 그러나, 서픽스 트리는 인덱스 특성상 메모리 공간을 많이 차지하며, 트리의 분할 시 DNA 시퀀스의 비율로 인한 쏠림현상이 발생한다는 문제점을 가진다. 따라서, 본 논문에서는 공통의 프리픽스를 가지는 가변길이의 파티셔닝 방법으로 합병하지 않는 인덱싱 방안인 SENoM을 제안한다. SENoM은 전체 시퀀스에서 공통의 프리픽스를 가지는 서픽스들의 발생 빈도수가 임계치 이하인 경우 디스크에 저장하고, 임계치 이상인 경우 임계치 이하가 될 때까지 프리픽스를 확장한다. 모든 파티션은 서브트리로 구축한 후 디스크에 저장하며, 질의처리를 위해, 구축된 파티션의 프리픽스를 서픽스로 가지는 트리를 구축한다. 제안하는 기법은 복잡한 합병과정을 제거하고, 많은 파티션 발생으로 인한 디스크 I/O 발생을 줄인다. 실험을 통해, SENoM이 Trellis 알고리즘에 비해 메모리 사용량을 약 35%, 인덱스 크기를 약 20% 감소시켰음을 보인다. 또한, 질의길이가 긴 경우에도 프리픽스 트리를 이용하여 효과적인 질의처리가 가능함을 보인다.
선택도 추측은 관계형 데이타베이스에서 질의 최적화의 한 중요한 요소이다. 숫자 데이타에 대한 조건식에 대하여 이 주제는 많은 연구가 되어 왔으나 부분문자열에 대한 조건식은 최근에 이르러서야 관심의 초점이 되고 있다. 우리는 이 논문에서 이 문제를 위한 새로운 서픽스 트리 변환 알고리즘을 제시한다. 제안하는 기법은 서픽스 트리의 노드들을 단순히 잘라 없애 버리기 보다는 기본적으로 비슷한 카운트를 갖는 노드들을 구조적 정보를 유지하면서 병합하여 전체 크기를 줄인다. 본 논문은 여러 제약 사항하에서 서픽스 트리를 그 크기를 줄이도록 변환을 하는 알고리즘을 제시하고 실생활 데이타를 대상으로 실험을 수행하여 우리가 제안하는 알고리즘이 기존의 알고리즘들보다 우수한 평균 상대 에러와 에러 분포 특성을 지니고 있음을 보인다.
패턴 매칭 알고리즘은 컴퓨터 네트워크, 유비쿼터스 네트워크, 그리고 센서 네트워크 등을 위한 보안 프로그램에 주로 사용 된다. IT 기술의 발전과 함께 정보의 디지털화가 가속화되면서 네트워크를 통해 전달되는 데이터양이 급증하고 있다. 이에 따라 패턴 매칭 연산의 복잡도도 폭발적으로 증가하고 있다. 따라서 더 많은 패턴을 보다 빠르게 검색할 수 있는 고성능 알고리즘의 개발이 끊임없이 요구되고 있다. 본 논문은 서픽스 트리 기반 패턴 매칭 알고리즘을 새롭게 제안하여 대용량 패턴 매칭 연산의 성능을 높였다. 서픽스 트리는 사전에 정의된 복수 패턴들의 서픽스를 기반으로 생성된다. 이 트리에 쉬프트 노드 개념을 추가하여 기존 패턴 매칭 연산들 중 불필요한 연산의 수행 횟수를 줄였다. 결과적으로 제안하는 구조를 통해 기존 알고리즘 대비 24% 이상의 성능 향상을 이루었다.
지금까지 문자열 데이타에 대한 선택도 추정은 문자열들의 등장 회수에 대한 정보를 저장하고 있는 '카운트 서픽스 트리'를 생성한 뒤, 이 트리를 이용하여 부분 문자열들의 선택도를 추정하는 방법으로 이루어졌다. 그런데, 문자열 데이타가 생물학 서열처럼 매우 길어질 경우 카운트 서픽스 트리를 생성하는 일은 거의 불가능해진다는 문제점이 발생한다. 이 논문에서는 길이가 q인 부분 문자열들만을 삽입한 '카운트 큐그램 트리'를 제안한다. 카운트 큐그램 트리는 서열 내의 길이가 q 이하인 모든 부분 문자열(큐그램) 들의 정확한 등장 회수를 저장하고 있으며, 문자열의 전체 길이 N에 상관없는 크기로, O(N) 시간에 생성 가능하다. 또한, 이 논문에서는 카운트 큐그램 트리를 이용한 'k번째 최대겹침' 추정 방법을 제시한다. 이 추정 방법은 질의 문자열을 길이 q인 부분 문자열로 나눌 때 부분 문자열들의 겹치는 정도 k를 선택할 수 있도록 한 방법으로 이전 연구에서 제시한 '최대겹침' 방법을 확장하였다. q와 k를 변화시키며 진행한 실험 올 통해 대부분의 경우에 매우 정확하게 선택도를 추정할 수 있음을 확인하였다.
유연 패턴은 시간 축으로 확장 및 수축할 수 있는 요소들의 순서화된 리스트이다. 유연 패턴은 서로 다른 샘플링 비율을 갖는 데이터 시퀀스들로부터 규칙들을 찾아내는데 유용하게 사용된다. 본 연구에서는 헤드(head: 규칙의 왼쪽 부분)와 바디(body: 규칙의 오른쪽 부분)가 모두 유연 패턴으로 구성된 규칙들을 신속하게 찾도록 하기 위하여 데이터 시퀀스로부터 서픽스 트리(suffix tree)를 구성한다. 이 서픽스 트리는 유연 규칙들의 압축된 표현이며, 타깃 헤드 시퀀스와 매치되는 규칙을 찾기 위한 인덱스 구조로서 사용된다. 만일, 매치되는 규칙을 찾을 수 없는 경우에는 규칙 완화(rule relaxation)의 개념을 이용한다. 클러스터 계층(cluster hierarchy)과 완화 오차(relaxation error)를 사용하여 타깃 헤드 시퀀스의 고유한 정보를 대부분 포함하고 있는 최소한으로 완화된 규칙을 찾는다. 다양한 실험을 통한 성능 평가를 통하여 제안한 기법의 우수성을 검증한다.
본 논문에서는 유연 패턴(elastic pattern)을 갖는 규칙(rule)을 탐사하고 매칭하는 기법에 대해 논의한다. 유연 패턴은 시간 축으로 확장 및 수축할 수 있는 요소들의 순서화된 리스트이다. 유연 패턴은 서로 다른 샘플링 비율을 갖는 데이터 시퀀스들로부터 규칙들을 찾아내는데 유용하게 사용된다. 본 연구에서는 헤드(head: 규칙의 왼쪽 부분)와 바디(body: 규칙의 오른쪽 부분)가 모두 유연 패턴으로 구성된 규칙들을 신속하게 찾도록 하기 위하여 데이터 시퀀스로부터 서픽스 트리(suffix tree)를 구성한다. 이 서픽스 트리는 유연 규칙들의 압축된 표현이며, 타깃 헤드 시퀀스와 매치되는 규칙을 찾기 위한 인덱스 구조로서 사용된다. 만일, 매치되는 규칙을 찾을 수 없는 경우에는 규칙 완화(rule relaxation)의 개념을 이용한다. 클러스터 계층(cluster hierarchy)과 완화 오차(relaxation error)를 사용하여 타깃 헤드 시퀀스의 고유한 정보를 대부분 포함하고 있는 최소한으로 완화된 규칙을 찾는다. 다양한 실험을 통한 성능 평가를 통하여 제안한 기법의 우수성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.