• Title/Summary/Keyword: 서포트 벡터

Search Result 338, Processing Time 0.02 seconds

Energy Theft Detection Based on Feature Selection Methods and SVM (특징 선택과 서포트 벡터 머신을 활용한 에너지 절도 검출)

  • Lee, Jiyoung;Sun, Young-Ghyu;Lee, Seongwoo;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.119-125
    • /
    • 2021
  • As the electricity grid systems has been intelligent with the development of ICT technology, power consumption information of users connected to the grid is available to acquired and analyzed for the power utilities. In this paper, the energy theft problem is solved by feature selection methods, which is emerging as the main cause of economic loss in smart grid. The data preprocessing steps of the proposed system consists of five steps. In the feature selection step, features are selected using analysis of variance and mutual information (MI) based method, which are filtering-based feature selection methods. According to the simulation results, the performance of support vector machine classifier is higher than the case of using all the input features of the input data for the case of the MI based feature selection method.

Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors (IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정)

  • Kim, Hye-Jin;Lee, Hyeon Soo;Choi, Byung Jin;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, quality control (QC) is applied to each meteorological element of weather data collected from seven IoT sensors such as temperature. In addition, we propose a method for estimating the data regarded as error by means of machine learning. The collected meteorological data was linearly interpolated based on the basic QC results, and then machine learning-based QC was performed. Support vector regression, decision table, and multilayer perceptron were used as machine learning techniques. We confirmed that the mean absolute error (MAE) of the machine learning models through the basic QC is 21% lower than that of models without basic QC. In addition, when the support vector regression model was compared with other machine learning methods, it was found that the MAE is 24% lower than that of the multilayer neural network and 58% lower than that of the decision table on average.

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

Visual Object Tracking by Using Multiple Random Walkers (다중 랜덤 워커를 이용한 객체 추적 기법)

  • Mun, Juhyeok;Kim, Han-Ul;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.913-919
    • /
    • 2016
  • In this paper, we propose the visual tracking algorithm that takes advantage of multiple random walkers. We first show the tracking method based on support vector machine as [1] and suggest a method that suppresses feature vectors extracted from backgrounds while preserve features vectors from foregrounds. We also show how to discriminate between foregrounds and backgrounds. Learned by reducing influences of backgrounds, support vector machine can clearly distinguish foregrounds and backgrounds from the image whose target objects are similar to backgrounds and occluded by another object. Thus, the algorithm can track target objects well. Furthermore, we introduce a simple method improving tracking speed. Finally, experiments validate that proposed algorithm yield better performance than the state-of-the-art trackers on the widely-used benchmark dataset with high speed.

Novel Analysis Algorithm of Fatty Liver using statistical feature vector from Ultrasound image (초음파 영상의 통계적 특징 벡터를 활용한 지방간 분석 알고리즘)

  • Ha, Soo-Hee;Yoo, Jae-Chern
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.556-558
    • /
    • 2019
  • 기존 초음파 지방간 분석은 Hepatorenal sonographic index(HI)를 사용하여 지방간을 진단하여 왔다. 이러한 HI 기법에서는 Hepato(간)과 Renal(신장), 두 부분의 영상데이터를 비교 활용하였다면, 본 논문에서는 신장의 영상데이터만을 이용하여, 이의 통계적 특징 벡터만을 활용하여 지방간을 진단을 함으로서 기존의 HI기반 분석대비 편리성과 정확도를 개선코자 Kidney Index(KI) 기반의 분석 기법을 제안한다. 본 논문에서 제안된 KI는 정상간과 지방간을 가진 실제 환자의 초음파 사진(정상간, 지방간 각 30명)을 학습 데이터를 구성하고, 이들 데이터군으로부터 특징 벡터들을 선별하여 머신러닝 기법 중 서포트 벡터 머신(Support Vector Machine)을 통해 학습시켜, 제안된 알고리즘의 유효성을 입증하였다.

Estimating GARCH models using kernel machine learning (커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정)

  • Hwang, Chang-Ha;Shin, Sa-Im
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.419-425
    • /
    • 2010
  • Kernel machine learning is gaining a lot of popularities in analyzing large or high dimensional nonlinear data. We use this technique to estimate a GARCH model for predicting the conditional volatility of stock market returns. GARCH models are usually estimated using maximum likelihood (ML) procedures, assuming that the data are normally distributed. In this paper, we show that GARCH models can be estimated using kernel machine learning and that kernel machine has a higher predicting ability than ML methods and support vector machine, when estimating volatility of financial time series data with fat tail.

New Kernel-Based Normality Recovery Method and Applications (새로운 커널 기반 정상 상태 복구 기법과 응용)

  • Kang Dae-Sung;Park Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.410-415
    • /
    • 2006
  • The SVDD(support vector data description) is one of the most important one-class support vector learning methods, which depends on the strategy of utilizing the balls defined on the feature space to discriminate the normal data from all other possible abnormal objects. This paper addresses on the extension of the SVDD method toward the problem of recovering the normal contents from the data contaminated with noises. The validity of the proposed de-noising method is shown via application to recovering the high-resolution images from the low-resolution images based on the high-resolution training data.

Generating of Pareto frontiers using machine learning (기계학습을 이용한 파레토 프런티어의 생성)

  • Yun, Yeboon;Jung, Nayoung;Yoon, Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.495-504
    • /
    • 2013
  • Evolutionary algorithms have been applied to multi-objective optimization problems by approximation methods using computational intelligence. Those methods have been improved gradually in order to generate more exactly many approximate Pareto optimal solutions. The paper introduces a new method using support vector machine to find an approximate Pareto frontier in multi-objective optimization problems. Moreover, this paper applies an evolutionary algorithm to the proposed method in order to generate more exactly approximate Pareto frontiers. Then a decision making with two or three objective functions can be easily performed on the basis of visualized Pareto frontiers by the proposed method. Finally, a few examples will be demonstrated for the effectiveness of the proposed method.

Malware classification using statistical techniques (통계적 기법을 이용한 악성 소프트웨어 분류)

  • Won, Sungmin;Kim, Hyunjoo;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.851-865
    • /
    • 2017
  • Ransomware such as WannaCry is a global issue and methods to defend against malware attacks are important. We have to be able to classify the malware types efficiently in order to minimize the damage from malwares. This study makes models to classify malware properly with various statistical techniques. Several classification techniques such as logistic regression, random forest, gradient boosting, and support vector machine are used to construct models. This study also helps us understand key variables to classify the type of malicious software.