References
- Brieman, L. (2001). Random forests, Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Brieman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees, Chapman and Hall, New York.
- Chen, L. and Aritsugi, M. (2006). An SVM-Based Masquerade Dection Method with Online Update Using Co-occurrence Matrix, DIMVA 2006, LNCS 4064, 37-53.
- Choi, J., Kim, H., Kim, K., Park, H., and Song, J. (2014). A study on extraction of optimized API sequence length and combination for efficient malware classification, Journal of The Korea Institute of Information Security & Cryptology, 24, 897-909. https://doi.org/10.13089/JKIISC.2014.24.5.897
- Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning, 20, 273-297.
- Dahl, G. E., Stokes, J, W., Deng, L., and Yu, D. (2013). LARGE-SCALE MALWARE CLASSIFICATION USING RANDOM PROJECTIONS AND NEURAL NET WORKS, Acoustics, Speech and Processing (ICASSP), IEEE.
- Friedman, J. (2002). Stochastic gradient boosting, Computational Statistics & Data Analysis, 38, 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
- Han, S., Lee, K., and Lee, S. (2009). Packed PE file detection for Malware forensics, 2nd International Conference on Computer Science and its Applications, CSA.
- Kim, M., Lee, J., Chang, H., Cho, S., and Park, Y. (2010). Design and performance evaluation of binary code packing for protecting embedded software against reverse engineering, In 13th IEEE International Symposium, (ISORC), 80-86.
- Konrad, R. (2011). Automatic analysis of malware behavior using machine learning, Journal of Computer Security, 19, 639-668. https://doi.org/10.3233/JCS-2010-0410
- Kwon, H., Kim, S., and Im, E. (2012). An Malware classification system using multi N-gram, Journal of Security Engineering, 9, 531-542.
- Lyda, R. and Hamrock, J. (2007). Using entropy analysis to find encrypted and packed malware, IEEE Security & Privacy, 5.
- Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package, https://cran.r-project.org/web/packages/gbm/
- Runwal, N., Low, R. M., and Stamp, M. (2012). Opcode graph similarity and metamorphic detection, Journal in Computer Virology, 8, 37-52. https://doi.org/10.1007/s11416-012-0160-5
- Santos, I., Penya, Y. K., Devesa, J., and Bringas, P. G. (2009). N-grams-based file signatures for malware detection, 11th International Conference on Enterprise Information Systems (ICEIS), AIDSS, 317-320.